Не позволяйте вчерашнему дню влиять на себя сегодня

В тени динозавров. Родословная млекопитающих

В тени динозавров. Родословная млекопитающих
Млекопитающие – уникальная группа живых организмов в истории нашей планеты, представители которой освоили передачу значительной часть информации от поколения к поколению негенетическим путем. С момента происхождения и развития жизни эта эволюционная тенденция наблюдалась постоянно в разных эволюционных линиях живых существ. Но только в стволе млекопитающих она достигла своего наиболее яркого и полного выражения, породив в итоге «феномен человека». Именно это привело к формированию ноосферы, это определило и определяет в настоящее время структуру биосферы. Поэтому так важно понять роль и место млекопитающих в истории развития живого...
Первые млекопитающие появились на нашей планете в позднем триасе, примерно 220 млн лет назад. Это не так уж много, если учесть, что первые микроорганизмы появились более 3,5 млрд лет назад, многоклеточные – примерно 1,5 млрд лет назад, а первые позвоночные – в раннем ордовике, т. е. около 500 млн лет назад.

Эти две сотни миллионов лет были полны драматизма. В основе сюжета исторической драмы лежало противостояние двух разных эволюционных групп, оспаривавших друг у друга господствующее положение. Обе группы произошли в позднем палеозое от лабиринтодонтов – древнейших амфибий, унаследовавших от своих прямых предков – кистеперых рыб – плоский, напоминающий панцирь череп с отверстиями лишь для глаз и ноздрей.

В схеме использованы рисунки-реконструции д.г.-м.н. С. Наугольных
В схеме использованы рисунки-реконструции д.г.-м.н. С. Наугольных

Примитивные легкие и отсутствие подвижных ребер – «мехов» для нагнетания воздуха – заставляло амфибий использовать ротовую полость как дополнительный орган дыхания (так же, как дышит лягушка), в результате чего голова у них достигала гигантских размеров – до трети длины тела.

Такой череп тормозил развитие жевательной мускулатуры и челюстного аппарата, да и дальнейшую эволюцию группы в целом. Появление более совершенной дыхательной системы позволило снять с ротовой полости эту дополнительную «нагрузку», и череп начал быстро совершенствоваться. Его поперечный профиль из уплощенного становится сводчатым, что резко увеличивает прочность конструкции. В крыше черепа появляются отверстия для выхода челюстной мускулатуры.

Подобная модернизация черепа протекала двумя различными путями: в группе так называемых диапсид появилось два таких отверстия, у синапсид – одно. В этом и состоит внешнее анатомическое различие двух самых крупных групп наземных позвоночных, давших мощную радиацию в позднем палеозое и мезозое. Но их исторические судьбы оказались совершенно различными.

Динозавры первыми «встали на ноги»

Одно из основных направлений эволюции диапсид – формирование ажурной и подвижной структуры черепа.

Кроме того, у диапсид могут постоянно отрастать зубы взамен поломанных или утраченных. За это «удобство» приходится дорого платить: беспорядочная смена зубов исключает окклюзию (точную подгонку верхних и нижних зубов друг к другу). Поэтому у диапсид отсутствует зубной аппарат режущего типа.

Диапсиды и синапсиды имеют общих предков – лабиринтодонтов – древнейших амфибий, унаследовавших от своих предков, кистеперых рыб, плоский, напоминающий панцирь череп. Ископаемая кистеперая рыба Gyroptychius (средний девон). Рис. Э. Воробьевой по: (Jarvik, 1948). Лабиринтодонт Ichtyostega (верхний девон). Рис. автора по: (Jarvik, 1955), с изменениями.
Диапсиды и синапсиды имеют общих предков – лабиринтодонтов – древнейших амфибий, унаследовавших от своих предков, кистеперых рыб, плоский, напоминающий панцирь череп. Ископаемая кистеперая рыба Gyroptychius (средний девон). Рис. Э. Воробьевой по: (Jarvik, 1948). Лабиринтодонт Ichtyostega (верхний девон). Рис. автора по: (Jarvik, 1955), с изменениями.

Диапсиды по-своему решили общую для наземных позвоночных проблему передвижения на суше. Многие из них перешли к бипедии, т. е. к хождению на двух ногах, что сопровождалось редукцией передних конечностей, а некоторые вовсе утратили ноги, как, например, змеи.

Ко всему, диапсиды, по-видимому, никогда не обладали гомойотермией – физиологически обусловленной стабильной температурой тела. Исключение составляют только птицы, да у некоторых крупных динозавров инерционное сохранение более или менее постоянной температуры обеспечивалось благодаря большим размерам тела.

К ДИАПСИДАМ (т.е. имеющим в черепе два отверстия для выхода челюстной мускулатуры и две скуловые дуги) относятся динозавры в широком смысле, их триасовые предшественники – архозавры и потомки: крокодилы, ящерицы, змеи, а также птицы.

Слева: череп диапсида – крупного хищного динозавра Tarbosaurus efremovi (верхний мел, Монголия). Рис. автора по: (Малеев, 1955), с изменениями. Справа: череп синапсида – утконоса Ornithorhynchus anatinus, современного млекопитающего из отряда однопроходных. Australian Museum, NM 19721. Рис. автора
Слева: череп диапсида – крупного хищного динозавра Tarbosaurus efremovi (верхний мел, Монголия). Рис. автора по: (Малеев, 1955), с изменениями. Справа: череп синапсида – утконоса Ornithorhynchus anatinus, современного млекопитающего из отряда однопроходных. Australian Museum, NM 19721. Рис. автора

Для диапсид характерна ажурная и подвижная структура черепа. Например, ящерицы и змеи, раскрывая рот, не только опускают вниз нижнюю челюсть, но могут также приподнимать и опускать переднюю часть верхней челюсти. Нижнечелюстной сустав может раздвигаться. Обе половинки нижней челюсти соединены между собой эластичными связками. У диапсид фактически нет мозговой коробки: полость, в которой расположен мозг, открыта спереди и представляет собой подобие трубки.

Сам мозг как у древних, так и у современных диапсид (кроме птиц) очень примитивен.  

Конструктивное единство элементов черепа у синапсид позволило им уже в триасе сформировать монолитную черепную коробку. Число костей нижней челюсти у синапсид неуклонно уменьшалось, и в итоге из шести костей осталась только одна – зубная.

Слева: благодаря подвижности черепа диапсиды могут заглатывать добычу, размер которой превышает диаметр тела самого хищника. Череп гремучей змеи Crotalus (Южная Америка). Рис. Л. Татаринова по: (Терентьев, Чернов, 1950), с изменениями. Справа: современные млекопитающие из отряда однопроходных сохранили в строении черепа многие признаки своих триасовых предков. Череп ехидны Echidna (Австралия). Australian Museum, NM 8610. Рис. автора
Слева: благодаря подвижности черепа диапсиды могут заглатывать добычу, размер которой превышает диаметр тела самого хищника. Череп гремучей змеи Crotalus (Южная Америка). Рис. Л. Татаринова по: (Терентьев, Чернов, 1950), с изменениями. Справа: современные млекопитающие из отряда однопроходных сохранили в строении черепа многие признаки своих триасовых предков. Череп ехидны Echidna (Австралия). Australian Museum, NM 8610. Рис. автора

Такое монолитное строение черепа стало, по существу, преадаптацией к дальнейшему развитию мозга.

Млекопитающие (а также пеликозавры и терапсиды, в том числе териодонты — «зверозубые рептилии») относятся к СИНАПСИДАМ, у которых в черепе имеется только одно отверстие (височное окно) для выхода челюстной мускулатуры.

В отличие от диапсид, у синапсид никогда не формировалась подвижная конструкция черепа: со временем последний, наоборот, становился все более монолитным. Это можно рассматривать как преадаптацию к совершенствованию мозга, которое, впрочем, началось гораздо позже.

Со временем количество зубов и их положение в челюсти у синапсид стабилизировалось, что сделало возможным окклюзию. Это, в свою очередь, позволило осуществлять первичную обработку пищевого комка, чего никто из диапсид – ни динозавры, ни современные крокодилы, ящерицы и змеи – делать не способны.

Положение конечностей у различных наземных позвоночных  по отношению к поперечному сечению тела. Рис. автора
Положение конечностей у различных наземных позвоночных
по отношению к поперечному сечению тела. Рис. автора

В отношении опорно-двигательного аппарата синапсиды вначале уступали диапсидам: ни в перми, ни в триасе они так и не не научились передвигаться на двух ногах. Передвижение же на четырех конечностях эффективно, только если существо имеет вертикально поставленные конечности, а пермо-триасовые синапсиды как бы «висели» между своими ногами. Латеральное (боковое) положение конечностей сохраняли еще и некоторые мезозойские млекопитающие – такое положение крайне неэкономно с точки зрения расхода мышечной энергии.

В совершенствовании локомоторного аппарата синапсиды вначале уступали диапсидам. Перевести ноги в вертикальное положение синапсидам удалось лишь в конце триаса, уже на стадии млекопитающих – для этого потребовались очень крупные преобразования опорно-двигательного аппарата.

Что касается гомойотермии, то, в отличие от диапсид, первые попытки перехода к ней, по-видимому, были у синапсид уже в карбоне. Вспомним пеликазавров с их огромным «парусом» на спине, который специалисты все более склонны рассматривать как средство стабилизации температуры тела.

Диапсиды и синапсиды: великое противостояние

Именно синапсиды первыми в истории Земли создали в пермском периоде богатую и разнообразную фауну позвоночных суши. Только два региона сохранили для нас в большом количестве ее окаменевшие остатки: Южная Африка и Русская платформа (бассейн Северной Двины и Башкирия). Среди пермских синапсид были крупные сильные хищники размером с тигра, с огромными кинжаловидными клыками – горгонопсиды (иностранцевия и др.); были охотники на мелкую добычу, аналоги куньих и псовых; существовали и растительнояды, например, листрозавры, каннемейериды – большие тяжеловесные животные.

Слева: этот хищный синапсид – завроктон (Sauroctonus progressus) – достигал размера волка. Конец перми, Татария. Справа: в раннем триасе растительноядные синапсиды листрозавры, подобные этим небольшим Lystrosaurus georgi, были распространены по всей планете. Ранний триас, Нижегородская область. Рис. из эспозиции ПИН РАН
Слева: этот хищный синапсид – завроктон (Sauroctonus progressus) – достигал размера волка. Конец перми, Татария. Справа: в раннем триасе растительноядные синапсиды листрозавры, подобные этим небольшим Lystrosaurus georgi, были распространены по всей планете. Ранний триас, Нижегородская область. Рис. из эспозиции ПИН РАН

К началу юры диапсиды «переиграли» синапсид, очевидно, в основном именно благодаря изобретению двуногой локомоции. Хищные диапсиды (динозавры) полностью вытеснили хищных синапсид. Интересно, что растительноядные синапсиды пережили свое время и сосуществовали с хищниками из диапсид. Как будет рассмотрено ниже, растительноядность вообще, в том числе на базе диапсид, формировалась в процессе эволюции «с трудом». В целом же биота синапсид была почти нацело «стерта» сообществом диапсид, господство которых продолжалось с конца триаса до конца мела.

Слева: утконосый динозавр зауролоф (Saurolophus angustirostris) достигал в высоту 8–9 м. Число его щечных зубов, раcполагавшихся в несколько рядов в глубине ротовой полости, достигало 1000. Поздний мел, Монголия. Рис. К. Флерова. Справа: жертва хищного звероподобного синапсида иностранцевии (Inostrancevia) – растительноядный динозавр скутозавр (Scutosaurus). Поздняя пермь. Рис. из эспозиции ПИН РАН
Слева: утконосый динозавр зауролоф (Saurolophus angustirostris) достигал в высоту 8–9 м. Число его щечных зубов, раcполагавшихся в несколько рядов в глубине ротовой полости, достигало 1000. Поздний мел, Монголия. Рис. К. Флерова. Справа: жертва хищного звероподобного синапсида иностранцевии (Inostrancevia) – растительноядный динозавр скутозавр (Scutosaurus). Поздняя пермь. Рис. из эспозиции ПИН РАН

Расцвет диапсид закончился в позднем мелу, однако многие диапсиды (крокодилы, змеи и ящерицы) прекрасно существуют и в наши дни, а птицы делят с млекопитающими господствующее положение среди позвоночных животных суши. Но история синапсид на этом не закончилась, напротив – в кайнозое для них наступила новая эпоха расцвета. Как же синапсиды пережили долгий период господства диапсид, какие изменения они претерпели за это время, и чем было обусловлено их «возрождение» уже в виде млекопитающих?

Давид против Голиафа

Первые представители млекопитающих произошли в позднем триасе от мелких, эволюционно продвинутых териодонтов. Эти неспециализированные плотояды сумели закрепиться в динозавровой биоте лишь потому, что были очень мелкими, размером с мышь, что позволило им выйти из-под пресса хищных динозавров.

Слева: крупный хищный динозавр тарбозавр (Tarbosaurus bataar). Поздний мел, Монголия. Справа: Челюсти мелкого растительноядного динозавра пситтакозавра Psittacosaurus mongoliensis были похожи на клюв попугая. Ранний мел. Рис. из эспозиции ПИН РАН
Слева: крупный хищный динозавр тарбозавр (Tarbosaurus bataar). Поздний мел, Монголия. Справа: Челюсти мелкого растительноядного динозавра пситтакозавра Psittacosaurus mongoliensis были похожи на клюв попугая. Ранний мел. Рис. из эспозиции ПИН РАН

Например, для тиранозавра высотой до 5 м и весом 1,5—2 т охота на жертву, вес которой 10—20 г, была не только бессмысленной, с точки зрения энергетических затрат, но и безуспешной. Это поставило мезозойских синапсид вне пищевых цепей и блоков динозавровой биоты и дало им возможность просуществовать «в тени» динозавров более 150 млн лет, что составляет примерно две трети истории класса млекопитающих.

СТРУКТУРА БИОТЫ НАЗЕМНЫХ ПОЗВОНОЧНЫХ  Основные эволюционные линии кайнозойских млекопитающих даже в позднем мелу занимали сходные ниши мелких плотоядов – насекомоядов. Лишь в кайнозое произошла их взрывная радиация и переход в крупный размерный класс с освоением растительноядения. Возникшие при этом формы просуществовали палеоцен и эоцен, а затем уступили место группам менее специализированным, но более продвинутым по общему уровню организации. Последние и сформировали в олигоцене современные семейства млекопитающих
СТРУКТУРА БИОТЫ НАЗЕМНЫХ ПОЗВОНОЧНЫХ
Основные эволюционные линии кайнозойских млекопитающих даже в позднем мелу занимали сходные ниши мелких плотоядов – насекомоядов. Лишь в кайнозое произошла их взрывная радиация и переход в крупный размерный класс с освоением растительноядения. Возникшие при этом формы просуществовали палеоцен и эоцен, а затем уступили место группам менее специализированным, но более продвинутым по общему уровню организации. Последние и сформировали в олигоцене современные семейства млекопитающих.

Две трети своей истории млекопитающие буквально «проскакивали между пальцами» крупных хищных динозавров благодаря своим мелким размерам.

Важным событием в эволюции наземной биоты было появление многобугорчатых в юрском периоде: фактически впервые в истории Земли млекопитающие сформировали эффективного растительнояда в мелком размерном классе. Дело в том, что переваривать грубую растительную пищу позвоночные способны только с помощью симбиотических кишечных микроорганизмов.

Все растительноядные диапсиды были очень крупными, потому что большая масса тела обеспечивала инерционное сохранение относительно стабильной температуры, необходимой для существования кишечной флоры. В мелком размерном классе такое невозможно: кишечная флора будет погибать при любом охлаждении тела (например, ночью). Поэтому эффективное растительноядение у мелких позвоночных возможно только при наличии гомойотермии, присущей млекопитающим.

Схема эволюции млекопитающих (А)
Схема эволюции млекопитающих (А) и структура экологических ниш сообществ млекопитающих (Б) в мезозое и кайнозое. Современные млекопитающие подразделяются на два подкласса: прототерии и терии. В мезозойской биоте они образовывали четыре-пять групп, занимавших разные экологические ниши. Важным событием в эволюции стало появление в юрском периоде многобугорчатых – фактически первых мелких эффективных растительноядов. Еще одно значимое событие – появление во второй половине мелового периода крупных (размером с кошку) хищников: до этого момента млекопитающие и динозавры практически не «пересекались».

структура экологических ниш сообществ млекопитающих (Б)

Первые относительно крупные теплокровные хищники-млекопитающие размером с кошку представляли ощутимую угрозу для детенышей динозавров мелового периода.

Остальные млекопитающие юры и мела были также мелкие существа, преимущественно плотоядные. Исключение составляют триконодонты. В юре и в раннем мелу они, как и все другие млекопитающие, были очень маленькими, размером не больше мыши. Однако во второй половине мела среди них появился макрохищник, гигант среди млекопитающих, достигавший размеров современной кошки или вирджинского опоссума (Jenkins, Schaff, 1988).

Триконодонт гобиконодон (Gobiconodon ostromi) – один из первых крупных (обратите внимание на масштаб!) хищников-млекопитающих. Ранний мел, Центральная Монтана (схожая форма была ранее описана отечественными палеонтологами из раннего мела Монголии). По: (Jenkins, Schaff, 1988), с изменениями
Триконодонт гобиконодон (Gobiconodon ostromi) – один из первых крупных (обратите внимание на масштаб!) хищников-млекопитающих. Ранний мел, Центральная Монтана (схожая форма была ранее описана отечественными палеонтологами из раннего мела Монголии). По: (Jenkins, Schaff, 1988), с изменениями.

До этого момента биоты млекопитающих и динозавров практически не перекрывались, но теперь ситуация изменилась. Детеныши динозавров, только что вылупившиеся из яиц, были не крупнее курицы, имели хрящевой скелет, а по ночам не могли активно двигаться из-за охлаждения. Наверняка, они были легкой и желанной добычей триконодонтов. Эти агрессивные хищники, способные охотиться по ночам благодаря своей теплокровности, могли существенно повлиять на судьбу выводков меловых динозавров (Агаджанян, 2003). Эта гипотеза недавно получила подтверждение: китайские палеонтологи описали триконодонта Repenomamus giganticus с крупными островершинными зубами и массивной челюстью (длина его тела превышала 1 м, а вес достигал 12—14 кг), в желудке которого были найдены остатки молодого растительноядного динозавра (Hu et al., 2005).

Роль мезозойских млекопитающих в структуре биоты Земли не ограничивалась подобным ощутимым прессом на динозавров. У вышеупомянутых многобугорчатых щечные зубы имели структуру коронки по типу хомякообразных, а резцы по форме и строению напоминали резцы грызунов. С точки зрения функции и положения в сообществе многобугорчатые являлись высокоспециализированными «грызунами». Анализ их жевательного аппарата показал, что они питались довольно крупными объектами (Gambaryan, Kielan-Jaworowska, 1995). В юре и первой половине мела это могли быть орешки голосемянных (цикадовых, гинговых, араукариевых), в течение второй половины мела и в кайнозое – плоды покрытосемянных, в том числе бука, дуба и др.

Утконос
При препарировании головы утконоса после удаления шкуры и наружных мышц можно видеть, что наружный слуховой проход поднимается, изгибаясь, с нижней стороны черепа вверх до глазницы, где крепится к верхней части скуловой дуги позади глаза (рис. вверху). К нижней челюсти наружный слуховой проход крепится в месте расположения барабанной перепонки (рис. внизу). Челюсти утконоса («клюв») используются животным не только для захвата пищевых объектов. Этот орган является также важным элементом электросенсорной системы. Дело в том, что под водой утконос плавает с закрытыми глазами и замкнутым слуховым отверстием. Животное ориентируется и ловит добычу под водой благодаря генерируемым им электромагнитным колебаниям, а его клюв играет роль антенны, которая улавливает изменения структуры электромагнитного поля аналогично современному миноискателю.
Утконос

Утконос (Ornithorhynchus anatinus), наряду с ехидной, – единственные сохранившиеся представители древнейшей группы яйцекладущих млекопитающих. Обитает утконос в Австралии и Тасмании. В длину достигает полуметра, вес – до 2 кг. Хвост как у бобра, лапы снабжены плавательной перепонкой: животное ведет полуводный образ жизни. Самка откладывает и насиживает 1—2 яйца.

У самцов на задних лапах – ядовитая шпора. Есть предположение, что многие мезозойские млекопитающие могли иметь подобное оружие и использовать его для защиты от динозавров (Hurum et al., 2006)

Радиации многобугорчатых и покрытосемянных в начале второй половины мела совпадают по времени и, по-видимому, были взаимообусловлены, т. е. эти млекопитающие могли играть важную роль в расселении голосемянных, а затем и покрытосемянных. Адаптивный тип этой группы млекопитающих был настолько эффективен, что многобугорчатые перешагнули рубеж мел—кайнозой и просуществовали достаточно долго, до конца олигоцена, успешно конкурируя одно время даже с грызунами.

Современные млекопитающие подразделяются на два подкласса: прототерии и терии. И те и другие были известны уже в позднем триасе. В мезозойских сообществах млекопитающих господствовали прототерии, а терии были «изгоями». В кайнозое ситуация изменилась на противоположную. Чтобы понять причины этого, необходимо сделать экскурс в анатомию.

Между молоточком и наковальней

Имеющиеся данные по строению черепа (Kermack, Kielan-Jaworowska, 1971) и среднего уха однопроходных подтвердили глубокие различия между прототериями и териями, что дает основание предполагать, что они произошли от разных групп триасовых териодонтов. Напомним, что в ходе эволюции нижняя челюсть синапсид постепенно теряла кости, расположенные сзади от зубной кости, которая в свою очередь неуклонно увеличивалась, разрастаясь назад. На стадии первых млекопитающих она пришла в соприкосновение с чешуйчатой костью черепной коробки. В результате возникло новое сочленение нижней челюсти с черепом.

Судя по анатомическим особенностям, разные эволюционные линии млекопитающих разошлись еще на уровне предков.

У млекопитающих позднего триаса функционировали оба сочленения: старое (сочленованная кость нижней челюсти – квадратная кость черепной коробки) и новое (зубная кость – чешуйчатая кость). Затем старый сустав исчез, а новый сохранился.

Кости, формировавшие старый сустав, преобразовались в элементы звукопередаточного аппарата. Угловая и сочленованная кости нижней челюсти превратились в барабанную кость и молоточек, квадратная кость черепной коробки – в наковальню (еще один элемент звукопередающего механизма, стремечко, имелся уже у рептилий).

Слева: строение звукопередаточного механизма у разных групп наземных позвоночных. Справа: Строение среднего уха утконоса. Рис. автора. Такой звукопередающий аппарат имеет только одну степень пространственной свободы. Следствие – невозможность эволюционных преобразований среднего уха и всего черепа в целом у однопроходных. У современных териевых млекопитающих молоточек не образует единой жесткой структуры с барабанной костью и соединяется с наковальней при помощи подвижного сустава. Такая конструкция имеет как минимум три степени пространственной свободы. Работает она не как прямой шток, а по принципу карданного вала, когда механическое усилие от барабанной перепонки передается на сенсорную часть слухового органа по ломаной линии.  Современные прототериевые млекопитающие (однопроходные), к которым относится утконос, обладают своеобразным звукопередаточным механизмом (аналогичным обладали многобугорчатые).  Наковальня имеет форму тонкой, плоской плиточки, которая плотно прилегает к молоточку, образуя с ним одно целое. Молоточек в свою очередь жестко соединен с барабанной костью, которая не имеет контакта с другими костями черепа
Слева: строение звукопередаточного механизма у разных групп наземных позвоночных. Справа: Строение среднего уха утконоса. Рис. автора. Такой звукопередающий аппарат имеет только одну степень пространственной свободы.
Следствие – невозможность эволюционных преобразований среднего уха и всего черепа в целом у однопроходных.
У современных териевых млекопитающих молоточек не образует единой жесткой структуры с барабанной костью и соединяется с наковальней при помощи подвижного сустава. Такая конструкция имеет как минимум три степени пространственной свободы. Работает она не как прямой шток, а по принципу карданного вала, когда механическое усилие от барабанной перепонки передается на сенсорную часть слухового органа по ломаной линии.
Современные прототериевые млекопитающие (однопроходные), к которым относится утконос, обладают своеобразным звукопередаточным механизмом (аналогичным обладали многобугорчатые).
Наковальня имеет форму тонкой, плоской плиточки, которая плотно прилегает к молоточку, образуя с ним одно целое. Молоточек в свою очередь жестко соединен с барабанной костью, которая не имеет контакта с другими костями черепа.

Строение и эволюционная история барабанной кости, наковальни и молоточка различна у прототериев и териев.

По-видимому, именно эти особенности определили различия при модернизации черепа у этих двух групп млекопитающих. Черепа у всех прототериев очень однотипные и практически не менялись на протяжении 200 млн лет вплоть до настоящего времени. У териев, напротив, трехчленность звукопередающего механизма сделала возможной почти неограниченную модернизацию черепа в процессе эволюции и породила многообразие их строения.

Строение черепной коробки продвинутых териодонтов и млекопитающих. По: (Kermack, Kielan-Jaworowska, 1971; Kermack, Mussett, Rigney, 1981). В строении боковой стенки черепов прототериевых и териевых млекопитающих хорошо заметно принципиальное различие. У прототериев чешуйчатая кость небольшая и формирует только заднюю часть черепной коробки; боковую же часть формирует каменистая кость, в толще которой находятся вестибулярный и слуховой аппараты. Таким образом, эта кость одновременно защищает как мозговую полость, так и вестибулярный аппарат и сенсорную часть слухового органа. У териев же каменистая кость в процессе эволюции уменьшается, уходит под чешуйчатую и освобождается от функции защиты мозговой полости
Строение черепной коробки продвинутых териодонтов и млекопитающих. По: (Kermack, Kielan-Jaworowska, 1971; Kermack, Mussett, Rigney, 1981). В строении боковой стенки черепов прототериевых и териевых млекопитающих хорошо заметно принципиальное различие. У прототериев чешуйчатая кость небольшая и формирует только заднюю часть черепной коробки; боковую же часть формирует каменистая кость, в толще которой находятся вестибулярный и слуховой аппараты. Таким образом, эта кость одновременно защищает как мозговую полость, так и вестибулярный аппарат и сенсорную часть слухового органа. У териев же каменистая кость в процессе эволюции уменьшается, уходит под чешуйчатую и освобождается от функции защиты мозговой полости.

Правота этих рассуждений подтверждается тем, что начиная примерно с олигоцена, когда у териев завершилось формирование основных типов черепов, у многих из них срастаются молоточек и наковальня (Weber, 1927). Когда отпадает нужда хотя бы в одном сочленении, эволюция от него избавляется.

Мезозойские прототерии и терии различались также по строению зубного аппарата. По-видимому, изначально высокая специализация зубов прототериев также препятствовала их дальнейшей эволюции: будучи высоко адаптированными к своей динозавровой биоте, они «заблокировали» возможность изменения зубного аппарата.

Все эти принципиальные различия позволяют настаивать на том, что эволюционные линии прототериев и териев разошлись еще на уровне их предков – териодонтов. Современные однопроходные – это, по существу, животные териодонтового уровня, которые в условиях длительной изоляции на Австралийском континенте сохранили до наших дней многие признаки триасовых предков млекопитающих.

Колыбель для мозга

Что же касается обеих современных групп териев – сумчатых и плацентарных – то их представители известны начиная с раннего мела. Однако совершенная плацентарность, проявляющаяся в длительном вынашивании детенышей, по-видимому, развилась не раньше конца мела или начала кайнозоя. Об этом свидетельствуют так называемые сумчатые кости, имеющиеся у териодонтов, всех современных однопроходных и сумчатых.

Эти кости имелись и у ранних плацентарных вплоть до конца мела (Novacek et al., 1997). Однако с начала кайнозоя судьбы сумчатых и плацентарных разошлись: они оказались разделенными на двух блоках континентов (Северном и Южном), и их развитие пошло различными путями.

До возникновения совершенной плацентарности уровень развития головного мозга у всех млекопитающих был почти одинаков. Сумчатые, обитатели южных материков, сохраняют примитивное строение мозга и по сей день. Почему так произошло? В целом сумчатость, как тип размножения, выгоднее для сохранения популяции, чем плацентарность. Самка сумчатых в случае опасности, в отличие от плацентарных, просто выбрасывает детеныша из сумки и убегает. Новое зачатие у сумчатых возможно почти сразу после рождения детеныша. Убегая, самка спасает себя – полноценного производителя, оплодотворенную яйцеклетку и иногда висящего на соске новорожденного детеныша.

Так называемые сумчатые кости, имевшиеся у териодонтов, обнаружены не только у всех современных сумчатых, но и у однопроходных. Тазовые кости утконоса. Рис. автора
Так называемые сумчатые кости, имевшиеся у териодонтов, обнаружены не только у всех современных сумчатых, но и у однопроходных. Тазовые кости утконоса. Рис. автора

Однако при этом большую часть ответственности за судьбу детеныша, размером и формой напоминающего фасолину, несет уже не мать, а он сам, и прежде всего его головной мозг. А успешное функционирование системы и одновременно ее глубокие структурные преобразования невозможны. Кроме того, у детенышей сумчатых развивается более мощная по сравнению с детенышами плацентарных мускулатура, необходимая для сосания, что тормозит развитие черепной коробки и, соответственно, мозга.

Можно предположить, что именно плацентарность сыграла роль спускового механизма для неуклонного прогрессивного развития мозга.

Плацентарность максимально продлила внутриутробный период и тем самым сняла с мозга детеныша ответственность за контроль над развивающимся организмом. Можно предположить, что она сыграла роль спускового механизма для развития центральной нервной системы – одного из важнейших условий для прогрессивной модернизации мозга в индивидуальном и историческом развитии. Именно поэтому плацентарные – бывшие изгои динозавровой биоты – дали в кайнозое огромное разнообразие форм и стали господствующей группой.

Кроме того, на южных материках Земли млекопитающие жили на сравнительно небольших и однородных в физико-географическом смысле территориях в условиях ослабленной конкуренции. На огромных же пространствах северных материков условия обитания и сообщества наземных позвоночных были значительно многообразнее, а конкуренция – жестче. В этой ситуации для эволюционного успеха было недостаточно одних лишь морфологических, структурных преимуществ: уже в раннем кайнозое в группе млекопитающих наблюдается быстрая эволюция головного мозга. Палеонтологическая летопись сохранила прямые свидетельства увеличения и усложнения мозга плацентарных на протяжении кайнозоя, что по-видимому, привело к значительному усложнению поведения млекопитающих.

Сложное поведение и обучаемость в ходе эволюции начинали развиваться во многих группах животных, но только у плацентарных млекопитающих эта важнейшая эволюционная тенденция достигла своего наиболее яркого и полного выражения. В течение кайнозоя постоянно совершенствовалась способность плацентарных передавать информацию от поколения к поколению негенетическим путем. Закономерным итогом этого неуклонного прогрессивного развития мозга стало появление человека разумного.

Литература:
  • Агаджанян А. К. Вопросы ранней радиации млекопитающих // Палеонтологический журнал. 2003. № 1. С. 78—91
  • Татаринов Л. П. Териодонты СССР// Труды Палеонтологического института РАН. М.: Наука, 1974. Т. 143. 250 с.
  • Татаринов Л. П. Морфологическая эволюция териодонтов и общие проблемы филогенетики. М.: Наука, 1976. 258 с.
  • Gambaryan P. P., Kielan-Jaworowska Z. Masticatory musculature of Asian taeniolabidoid multitubrculate mammals // Acta Paleontologica Polonica.1995. V. 40. N 1. P. 45—108
  • Gambaryan P. P., Kielan-Jaworowska Z. Sprawling versus parasagittal stance in multituberculate mammals // Acta Paleontologica Polonica.1997. V. 42. N 1. P. 13—44
  • Hu Yaoming, Meng Jin, Wang Yuanqing, Li Chuankui. Large Mesozoic mammals fed on young dinosaurua // Nature. 2005. V. 433. P. 149—152
  • Jenkins F. A. Jr., Schaff Ch. R. The early Cretaceous mammal Gobiconodon (Mammalia, Triconodontia) from the Cloverly Formation in Montana. // J. Vertebrate Paleontology.1988. V. 8. N 1. P. 1—24
  • Kielan-Jaworowska Z., Gambaryan P. P. Postcranial anatomy and habitas of Asian multituberculate mammals // Fossils and Strata. 1994. N 36. 92 p.
  • Novacek M. J., Rougier G. W., Wible J. R., McKenna M. C., Dashzeveg D., Horovitz I. Epipubic bones in eutherian mammals from the Late Cretaceous of Mongolia // Nature. 1997. V. 389. P. 483—486
  • Hurum J. H., Presley R., Kielan-Jaworoeska Z. The middle ear in multituberculate mammals // Acta Paleontologica Polonica.1996. V. 41. N 3. P. 253—275
  • Rougier G. W., Wible J. R., Novacek M. J. Middle-ear ossicles of the Multit

Agadzhanyan Alexander,
Doctor of Biological Sciences