Квантовый компьютер D-Wave 2000Q |
Хотя персональный компьютер прошёл долгий путь от громоздкой машины до миниатюрного смартфона, базовые принципы его работы почти не изменились. Будущее компьютеров обычно связывают с зарождением искусственного разума. Однако многие учёные скептически смотрят на то, что он появится на существующей элементной базе. Вероятно, для того чтобы «поумнеть», придётся измениться и самим компьютерам. Какими они станут?
Предел Мура
Первая универсальная вычислительная машина ENIAC, построенная в 1946 году, весила 27 тонн и использовала в качестве элементной базы вакуумные лампы. |
Для пояснения закона Мура сформулирована необычная аналогия: если бы авиапромышленность последнюю четверть века развивалась так же, как вычислительная техника, то сейчас «Боинг-767» стоил бы пятьсот долларов и облетал земной шар за двадцать минут, затрачивая не больше двадцати литров керосина.
Гордон Мур из Intel открыл, что каждые два года происходит удвоение вычислительной мощности процессоров при сохранении стоимости их производства. |
Будни фотоники
Одна из возможных альтернатив элементной базы для компьютеров — применение лазеров для передачи и обработки информации. В связи с этим внимание специалистов всё сильнее привлекает фотоника — аналог электроники, где вместо электронов используются фотоны, излучаемые лазерами.
Фотоника нашла применение в производстве оптоволоконных кабелей |
Модель первого «оптического» компьютера
DOC-II,
|
Внедрение фотонных коммуникаций позволит, помимо прочего, вдвое снизить энергозатраты и, соответственно, стоимость систем хранения данных. Например, в США дата-центры уже потребляют 2% от всей производимой в стране энергии, поэтому экономия при переходе на новую технологию будет существенной. Перейти с электроники на фотонику планируют компании, располагающие крупнейшими дата-центрами в мире: Amazon, Apple, Facebook и Google.
Прототип интегральной платы для оптического компьютера |
Мозговой процессор
- В 1998 году американский нейролог Филипп Кеннеди, которого называют «отцом киборгов», впервые имплантировал нейрокомпьютерный интерфейс в мозг парализованного ветерана Джонни Рэя. Пациент получил возможность управлять мышиным курсором и таким образом общаться с внешним миром, используя различные программы.
- В 2004 году Кеннеди вживил интерфейс 16-летнему Эрику Рэмси, утратившему способность говорить, и добился того, чтобы пациент смог произнести несколько слов через специальный декодер.
- В 2006 году специалисты компании CNS (Cyberkinetics Neurotechnology Systems) продемонстрировали миру Мэттью Нейгла — футбольную звезду из штата Массачусетс, который оказался частично парализован после драки. Ему имплантировали интерфейс, который позволял не только управлять курсором, но и играть в компьютерные игры, переключать каналы телевизора, шевелить электромеханической рукой и так далее.
В ближайшее время ожидается появление нового поколения нейроинтерфейсов: в виде «умных» татуировок на ушах и в виде нейропыли — сверхминиатюрных электронных сенсоров, которые будут внедряться в сосудистую оболочку мозга. По мере их распространения станет развиваться и программное обеспечение, осуществляющее коммуникацию, вплоть до появления «синтетической» телепатии, когда отдельные люди смогут общаться друг с другом без использования речевого аппарата.
В конечном итоге «синтетическая» телепатия позволит создавать «аватаров» — роботов или искусственных существ, которыми оператор будет управлять как своим собственным телом. Возможен и обратный процесс, при котором компьютерные программы будут «арендовать» человеческие мозги для выполнения в природной нейросети наиболее сложных вычислений.
Нейрокомпьютерным интерфейсом можно
пользоваться
|
В будущем нейрокомпьютерные интерфейсы
|
Возможно, предложенный прогноз слишком оптимистичен и воцарение мозго-сетей будет выглядеть как-то по-другому. Однако не приходится сомневаться: симбиоз человека с компьютером становится всё теснее, и когда-нибудь количество перейдёт в качество, породив принципиально новый вид обработки информации.
Троичный компьютер
Сетунь |
И её разработчики |
И всё-таки исключения встречаются: в 1959 году сотрудники вычислительного центра Московского государственного университета построили под руководством Николая Брусенцова уникальный троичный компьютер, получивший название «Сетунь» в честь протекающей рядом реки. После появления серийного образца Казанский завод математических машин выпустил пятьдесят компьютеров, тридцать из которых использовались в советских университетах.
Авторы «Сетуни» на основе обычной двоичной ферритодиодной ячейки создали её троичный аналог, работа которого была построена на двухбитном троичном коде: один трит (так в данном случае называется единица измерения) записывался в два двоичных разряда. «Сетунь» имела явные преимуществе перед двоичными аналогами: большая плотность записи информации, значительное быстродействие, повышенная защищённость от накопления ошибки. «Сетунь» так и не получила развития, однако современные учёные признают, что троичная логика более эффективна, поэтому к ней, возможно, ещё вернутся при проектировании компьютеров будущего.
Квантовый прорыв
Простейший, но далеко не простой квантовый компьютер Orion |
Информационная ячейка обычного компьютера может в один момент времени находиться только в одном из двух состояний — «0» или «1» (это называется битом). В отличие от неё, ячейка квантового компьютера может находиться одновременно во всех состояниях от «0» до «1», бесконечная совокупность которых называется кубитом (q-битом, квантовым битом). Если квантовый компьютер удастся построить и снабдить соответствующей программой, то теоретически в нём можно будет запустить бесконечное количество параллельных вычислений, получая результат мгновенно. Причём сложность вычислений никак не должна влиять на быстродействие компьютера. Например, установлено, что 30-кубитный квантовый компьютер по мощности будет равен суперкомпьютеру, работающему с производительностью 10 терафлопс (10 триллионов операций в секунду). Для сравнения: мощность современных настольных компьютеров измеряется всего лишь в гигафлопсах (миллиарды операций в секунду).
Вышеописанная концепция легла в основу экспериментальных квантовых процессоров канадской компании D-Wave Systems. Начав работу в 2007 году, компания прошла путь от прототипа, содержащего 16 кубитов (модель Orion), до чипов с 2000 кубитов (модель D-Wave 2000Q). Свои прототипы квантовых процессоров представили IBM, Intel, Google, Гарвардский университет и Объединённый квантовый институт в Мэриленде.
Инженеры IBM представили свою версию
|
Типичный квантовый компьютер выглядит как огромный чёрный шкаф, что объясняется необходимостью поддерживать сверхнизкие температуры и особые магнитные поля. Но ведь когда-то и обычные компьютеры занимали целые этажи. Специалисты утверждают, что смогут миниатюризировать и удешевить квантовые компьютеры, используя фотонику, ведь фотон — тот же квант, обладающий соответствующими свойствами. Однако главная проблема не в размерах, а в извлечении информации: в какой-то момент процесс квантового вычисления нужно остановить, чтобы получить ответ в виде бита — на выходе должны быть всё те же привычные «0» или «1».
В решении этой проблемы российские учёные заняли лидирующие позиции. Скажем, оптимизационный алгоритм, позволяющий повысить точность результата при использовании квантового компьютера, создал выдающийся отечественный математик Вадим Кротов. Итальянский профессор описывает его достижение так: «Вернёмся к нашему официанту. Что вы делаете, когда бьёте тарелки? Правильно, возвращаетесь назад во времени, представляя, как всё было бы, поступи вы немного иначе. Вы проецируете свои желания на то, что уже сделали. И в новой реальности вы будете аккуратнее. Так и алгоритм Кротова постоянно «возвращает» квантовую систему в прошлое и показывает, что будет при некоторой её корректировке. Ошибка при этом, конечно же, уменьшается».
Появление полноценного квантового компьютера, способного решать задачи любой сложности, не за горами. Говоря о перспективах, учёные обычно приводят следующий наглядный пример. Чтобы получить доступ к зашифрованной банковской карте, нужно разложить на два простых множителя число длиной в сотни цифр. Самому мощному суперкомпьютеру Sunway TaihuLight, проводящему квадриллионы операций в секунду, на это потребуется более 15 миллиардов лет — больше, чем возраст Вселенной! А квантовому компьютеру понадобится всего несколько часов.
Современный квантовый компьютер кажется
гигантским.
|
Впрочем, куда интереснее другой момент. Хотя квантовый компьютер — цифровая система, в своей физической основе это аналоговый прибор, работающий на фундаментальном уровне. Проще говоря, это маленькая модель Вселенной. Изучая квантовый компьютер, наука познаёт, как «программируется» Вселенная, как в ней накапливается и преобразуется природная информация. Вполне возможно, разобравшись в этих принципах, человечество научится «программировать» пространство и время. Или даже создавать новые вселенные.