Не позволяйте вчерашнему дню влиять на себя сегодня

Карл Фридрих Гаусс

Карл Фридрих Гаусс
В 1796 году Карл Фридрих Гаусс, учащийся первого курса Геттингенского университета, решил задачу, перед которой математическая наука пасовала более двух с лишним тысяч лет.

Несмотря на то, что еще древними греками были найдены способы построения с помощью только лишь циркуля и линейки правильных многоугольников с числом сторон 3, 4, 5, 15, а также с числом сторон, большим в 2 раза, в отношении прочих правильных многоугольников царила полная неизвестность.

И вот именно в этот день будущий «король математиков» Гаусс догадался, как построить правильный 17-угольник, кстати, также, с помощью циркуля и линейки.

Это открытие стало поворотным пунктом в его жизни: ранее колебавшийся между филологией и математикой, теперь он твердо решил посвятить себя последней. Кстати, он завещал изобразить 17-угольник на своем надгробии. Впоследствии скульптор отказался это сделать, утверждая, что построение будет настолько сложным, что результат нельзя будет отличить от окружности.

  
Впервые построение правильного 17-угольника было опубликована фон Пфейдерером в 1802 году. А в 1825 году Йоханнес Эрхингер опубликовал подробное описание построения правильного семнадцатиугольника в 64 шагах.
  
Проблема выбора геометрии, наиболее соответствующей реальному физическому пространству, первоначально поставленная в работах Гаусса, способствовала рождению еще одного творения человеческой мысли, убедившего математический мир, что геометрия физического пространства может быть неевклидовой. Автором новых идей был Георг Бернхард Риман (1826-1866), ученик Гаусса, ставший впоследствии профессором Гёттингенского университета. Хотя работы Лобачевского и Бойаи не были известны Риману в деталях, о них был великолепно осведомлен Гаусс, и Риман, несомненно, знал о сомнениях Гаусса относительно того, в какой мере истинна и насколько применима к физическому пространству евклидова геометрия.

Гаусс проложил дорогу поразительным идеям Римана, высказав еще одну революционную мысль.

Обычно мы изучаем геометрию на поверхности сферы, считая последнюю частью трехмерного евклидова пространства и тем самым заранее исключая любые радикально новые идеи. Но предположим, что мы рассматриваем поверхность сферы как пространство само по себе и строим геометрию такого пространства. Прямоугольные координаты здесь не очень подходят, так как для их построения необходимы прямые, которые отсутствуют на сфере. В качестве координат какой-либо точки на сфере можно было бы взять, например, широту и долготу.

Еще одна проблема возникает при попытке определить кратчайшие пути из одной точки в другую. Наш повседневный опыт, интерпретированный всеведущими математиками, подсказывает, что кратчайшими путями на поверхности сферы являются дуги больших кругов (например, меридианы), т.е. кругов, центр которых совпадает с центром Земли. Эти дуги и есть «прямые» в сферической геометрии. Продолжая изучать геометрию поверхности сферы, мы обнаружили бы немало странных теорем. Например, сумма углов треугольника, образованного дугами больших кругов, т.е. отрезками «прямых» сферической геометрии, больше 180°.

В своей знаменитой работе, опубликованной в 1827 г., Гаусс исподволь проводил следующую мысль: если мы изучаем поверхности как независимые пространства, то соответствующие этим пространствам двумерные геометрии могут оказаться весьма причудливыми в зависимости от формы поверхностей. Например, эллипсоидальная поверхность, имеющая форму мяча для регби, имеет иную геометрию, нежели сферическая поверхность.

А как обстоит дело на сфере с «параллельными»?

Поскольку любые два больших круга пересекаются не один раз, а дважды, в сферической геометрии нам не обойтись без аксиомы, гласящей, что любые две «прямые» пересекаются в двух точках.

Совершенно ясно, что геометрия поверхности сферы будет неевклидовой; впоследствии она получила название удвоенной эллиптической геометрии. Такая геометрия вполне естественна для поверхности Земли. Она достаточно «удобна в обращении» и по крайней мере ничуть не уступает той, которая возникает при рассмотрении сферы как двумерной поверхности в трехмерной евклидовой геометрии.

Идеи Гаусса были хорошо знакомы Риману. Гаусс предложил Риману несколько тем для публичной лекции, с которой тому предстояло выступить для получения звания приват-доцента, дававшего право на преподавание в Гёттингенском университете.

Риман остановил свой выбор на основаниях геометрии и в 1854 г. в присутствии Гаусса прочел свою лекцию на философском факультете. Лекция Римана была опубликована в 1868 г. под названием «О гипотезах, лежащих в основании геометрии».

Проведенное Риманом исследование геометрии физического пространства потребовало пересмотра всей проблемы, касающейся структуры пространства.

Риман первым поставил вопрос: что же нам достоверно известно о физическом пространстве?

Какие условия, или факты, заложены в самом понятии пространства еще до того, как мы, опираясь на опыт, выделяем конкретные аксиомы, которые выполняются в физическом пространстве?

Из этих исходных условий, или фактов, Риман намеревался вывести остальные свойства пространства. Такие аксиомы и логические следствия из них и необходимо априори признать истинными. Любые другие свойства пространства надлежало изучать эмпирически.

Одна из целей Римана состояла в доказательстве того, что аксиомы Евклида являются эмпирическими, а отнюдь не самоочевидными истинами. Риман избрал аналитический подход (опирающийся на алгебру и анализ), поскольку геометрические доказательства не свободны от влияния нашего чувственного опыта и в них возможны допущения, не входящие явно в число посылок.

Поиск априорного (предшествующего нашему знанию) пространства привел Римана к исследованию локального поведения пространства, ибо свойства последнего могут изменяться от точки к точке. Такой подход получил название дифференциальной геометрии в отличие от геометрии пространства в целом, которой занимался Евклид, а в неевклидовой геометрии — Гаусс, Бойаи и Лобачевский.

Следуя локальному подходу к геометрии, Риман столкнулся с необходимостью определить расстояния между двумя типичными, или характерными, точками, координаты которых отличаются на бесконечно малые величины.

  • Время должно существовать пространственно; временные события должны существовать, а не случаться, существовать до и после совершения и лежать как бы на одной плоскости. 
  • Следствия должны существовать одновременно с причинами.
  • Не может быть прежде, теперь и после. 
  • Моменты разных эпох, разделенные большими промежутками времени, существуют одновременно и могут соприкасаться.

                               (Бернхард Риман, немецкий математик)