14 декабря 1900
года впервые прозвучало слово «квант». Макс Планк, произнесший его, проявил
осторожность: это только рабочая гипотеза. Однако прошло не так много времени, и
Эйнштейн с завидной смелостью заявил: квант — это реальность! Но становление
квантовой механики не было спокойно триумфальным. Здесь как никогда прежде
драма идей тесно сплеталась с драмой людей, создававших новую физику. Об этом и
рассказывается в научно–художественной книге, написанной автором таких
известных произведений о науке, как «Неизбежность странного мира», «Резерфорд»,
«Нильс Бор». Собирая материал для своих книг, автор дважды работал в архиве
Института теоретической физики в Копенгагене.
Книга
научно–художественная. Для широкого круга читателей.
Если то, что мы называем Вселенной, зародилось случайно из атомов, которые неутомимы в своем вихревом движении, то как случилось, что ты столь прекрасна, а я влюблен?Джон ХОЛЛ (XVII век)
В облегченье рассказчикам кто–то придумал надежное правило: хорошую историю лучше всего начинать с начала…
Жаль
ослушаться доброго совета. Тем более что впереди — несомненно хорошая
история: рассказ о квантовой революции в человеческих представлениях об
устройстве природы. И одновременно — о перевороте в стиле физического
мышления! Такое случается не каждый век! Казалось бы, все ясно: быть
повествованию документальным, поскольку история эта невыдуманная. А раз
так, то весь ход ее заранее задан самим течением жизни — уже
состоявшейся и отошедшей сменой событий и лиц. Тут ничего не
переиначишь. Рассказчику остается лишь роль понятливого секретаря, не
правда ли?
Похоже, что правда. Однако тут есть каверза. И не одна.
Первая заключена в характере и степени понятливости секретаря. Каждый секретарь чего–то недослышит, другое и вовсе пропустит мимо ушей, третье недооценит, четвертое запишет туманно, пятым избыточно пленится, к шестому окажется равнодушным… Даже папки с архивными документами бесстрастно неподкупны лишь до той минуты, пока, их не раскроют. А едва тесемки развязаны, как в былое вмешиваются отбор и выбор нужного рассказчику материала — нужного в согласии с его понятливостью.
И вот уже рассказчик перестает быть безучастным секретарем. Он превращается в сочинителя документального повествования. Не противоречие ли — «сочинитель документального»? Конечно, противоречие. Но неизбежное и неустранимое. Любой документалист поневоле пишет свой вариант вроде бы заранее заданного течения жизни, отшумевшей или еще бурлящей. И неосмотрительно давать обещание — ничего не переиначивать. Оно просто невыполнимо.
Разумеется, неприкосновенны даты и внешние контуры событий, равно как и научный смысл происходившего. Но сверх этого есть люди, творившие и творящие историю. Подлинные лица с их единственностью — с их психологией. А все психологическое неоднозначно. В нем открывается простор для толкований. И тут уж никто не вправе с надежной достоверностью возразить рассказчику, что «на самом деле» все было иначе. А как — иначе? В ответ можно услышать еще одно толкование — не больше. Обычное свойство всех человеческих историй.
Наша хорошая история тем и хороша, что она — человеческая. Так ее и хочется рассказывать — не как выстроеннную по логическому ранжиру, а как сплетенную из идей и страстей, озарений и отчаяний, радостей и огорчений…
Сомнений нет: лучше всего начать рассказывать ее с начала. Но тут еще одна каверза: на что решиться, если начал у нее много и любое равно допустимо? Снова — отбор и выбор. И снова по воле рассказчика. Можно ли хоть здесь–то избавиться от нее в конце концов?
Да вот и подсказано решение: не начать ли с конца? Уж он–то наверняка один–единственный, как вершина в финале восхождения, как победа в итоге борьбы. Но наша история еще и тем хороша, что не было у нее и не будет конца. Бессрочность жизни на роду написана замечательным научным построениям: они не костенеют в завершенности, а все разрастаются на отведенном им природою поле.
Так что же отыскать для начала? Вот, может быть, это…
…Все не забывается туманное, а вместе солнечное утро в осеннем Копенгагене. Такое знакомое горожанину утро, когда из розовато–дымчатого вещества невидимое солнце лепит над укороченными туманом городскими далями смутные громады старых соборов и неузнаваемых башен. Все вокруг перестает быть взаправдашним. Улицы и площади рисуются, как в неверном воспоминании: где быль, где небыль, откроется ли вон за тем поворотом то, что незыблемо стояло там в прозрачности вчерашнего вечера? Какие новости припасены для тебя сейчас вон за тем едва различимым углом? В такое утро чувствуешь себя заблудившимся в чужом рассказе.
Так я и чувствовал себя в то копенгагенское утро. Но наверное, потому не выходит оно из головы, что я и сам, как город вокруг, был весь пропитан солнечным туманом — счастливой взбудораженностью. Дело в том, что мне тогда невероятно повезло.
Я собирал материалы для жизнеописания Нильса Бора. Верхом желаний была поездка в Копенгаген — столицу квантовой физики. Однако смел ли я надеяться, что буду приглашен туда боровским Институтом теоретической физики для месячной работы в его архиве? Меж тем это–то и состоялось осенью 1968 года.
В то утро фру Бетти Шульц, давняя и бессменная секретарша покойного Бора, ввела меня в маленькую комнату на Блегдамсвей, 17, и у окна, занавешенного солнечным туманом, старческой рукой протянула мне ключ от входных дверей архива. Потом погладила ладонью просторный стол и сказала по–английски: «Здесь хорошо работать». А услышав слова моей старательной благодарности, прибавила: «Работайте спокойно». Неспроста попыталась она вручить мне вслед за ключом порцию спокойствия: долгий и разнообразный опыт сразу подсказал ей, что вот и этот временный гость — из тех приезжих, что не умеют сами освободиться от мешающего возбуждения.
Она, прошедшая вместе с Нильсом Бором весь путь его прославленного института, видела, как в свое время появлялись здесь в похожем состоянии не нынешние историки науки или литераторы — архивные завсегдатаи, а ветераны квантовой революции — те, что ее делали и чьи голоса уже отзвучали…
Я приехал послушать в тишине архива эхо этих голосов.
1
Обычные архивы — коллекции милостей случая. Они разрастаются медленно, маленькими незапрограммированными скачками — от находки к находке. Торопиться, как правило, незачем. И, как правило, некому. Архивы собираются десятилетиями и веками.
А этот возник внезапно: за какую–нибудь тысячу дней он вобрал в себя едва ли не все, для него предназначенное, что по миру разбросала история, а заботливый случай сберег. Он возник по программе!
…В августе 1960 года встретились в университете Беркли, штат Калифорния, пятеро ученых. Вместе их свела наша хорошая история. Точнее — беспокойная мысль, что она покуда не написана. Еще точнее — тревога: как бы не исчезли с течением времени ее документальные следы и как бы не пропали для будущих поколений живые свидетельства ее непосредственных участников.
Кажется, впервые за всю историю естествознания совсем коротенький период его роста — три десятилетия! — удостаивался такой тревоги. Или иначе — такого преданного внимания.
Но не стоит думать, будто в Беркли встретилась группа вышедших в отставку ветеранов, честолюбиво обеспокоенных собственным бессмертием. Да нет же! Собралась маленькая группа деятельных физиков–философов–историков из разряда тех, что сегодня благодарно сознают себя духовными наследниками квантовой революции. Благодарно… В этом все дело. Они были единодушны в оценке ее вклада в человеческое познание. «Тут не нашлось бы параллели за последние три столетия» — так позднее выразил общее мнение инициатор встречи в Беркли, известный физик–теоретик Джон Арчибальд Уилер.
Не было ничего исключительного в столь высокой оценке недавно минувшей поры. Чувства собравшихся в Беркли разделили бы все их коллеги во всех университетских центрах мира. Но те пятеро решили действовать! И с их августовского совещания началась подготовка к гигантской трехлетней работе, для которой не нашлось бы параллели в истории научных архивов.
А через четыре месяца одно печальное событие заставило ускорить все приготовления: 5 января 1961 года в Вене скончался семидесятитрехлетний Эрвин Шредингер — создатель волновой механики микромира.
— Слышите, по ком звонит колокол? — сказал Уилер, возглавивший архивный комитет. — Время не ждет.
Его поняли с полуслова. Все помнили о недавних утратах:
- в 1954 году ушел Энрико Ферми,
- в 1955–м — Альберт Эйнштейн,
- в 1957–м — Джон фон Нейман,
- в 1958–м — Вольфганг Паули,
- в 1960–м — Абрам Федорович Иоффе…
Разумеется, многое расскажет переписка Шредингера. Дневники. Блокноты. Конспекты лекций. Рукописи статей. Черновые наброски. Словом, то, что окажется сохранившимся в его личном архиве, у фрау Шредингер, и в архивах его корреспондентов. А берег ли он свои бумаги? Хранил ли чужие письма? Оставлял ли копии собственных? Говорят, он был натурой неврастенической. Его обыкновения не предугадать. А в гитлеровские времена он кочевал: Швейцария, Италия, Ирландия. Все ли уцелело в нелегких переездах?.. Но сколько бы ни уцелело, все равно с его смертью исчезала возможность записать живой рассказ выдающегося исследователя о пережитой им драме идей и страстей.
Колокол звонил. И каждый его удар оставлял навсегда незаполнимый пробел в еще ненаписанной истории и в еще несобранном архиве источников для будущих историков. Ныне возникший пробел, связанный с именем Шредингера, был таким же зияющим, как пробелы с именами Эйнштейна, Паули, Ферми… Тем более чувствительным он был, что. запись живых свидетельств стояла главным пунктом в программе создания архива… «Это было первостепенным оправданием всего проекта», — написали впоследствии исполнители программы, которыми руководил высокосведущий историк физики Томас Кун.
Они установили: на свете еще здравствовали почти сто ветеранов квантовой революции — теоретиков и экспериментаторов разного масштаба и разных школ, некогда работавших вместе в старых научных центрах Европы и Америки. Теперь — спустя десятилетия — их нужно было чаще всего разыскивать в разных уголках земного шара. Моделью могли послужить изгнаннические судьбы двух крупнейших геттингенских исследователей — Макса Борна и Джеймса Франка: ныне, после второй мировой войны, первый обосновался в южногерманском Бад–Пирмонте, а второй — в массачусетском Фалмуте. Словом, сто ветеранов — сорок географических точек, столичных и захолустных: Копенгаген и Поло Альто, Рим и Ла Йолла, Нью–Йорк и Дельфт, Варшава и Сан–Диего, Киото и Пасифик Гроув, Москва, Вена, Париж, Лондон и… всего не перечислить.
Было задумано: посетить каждого и постараться от каждого выведать максимум уникальной информации — научной, психологической, социально–бытовой. Однако не проще ли было каждого ветерана настоятельно попросить: напишите свои мемуары? Нет, исполнители программы — сами мужи высокоученые — по личному опыту представляли, к чему бы это привело…
…В ту же пору, в 1960 году, академику Игорю Евгеньевичу Тамму был задан однажды вопрос: почему он не пишет воспоминаний, хотя столько видел, слышал, наработал и пережил за долгие десятилетия служения физике? Последовал стремительный ответ:
«Как! Разве на моем лице уже написано, что пора мне приниматься за воспоминания?»Ему было тогда шестьдесят пять. Но злоба дня в теории элементарных частиц влекла его живую душу сильнее, чем коллекционирование эпизодов прошлого.
Да и не просто это для нелитератора вдруг отважиться на томительные поиски нужных слов. Без молодого ассистента Йоргена Калькара семидесятилетний Нильс Бор никогда не написал бы своих воспоминаний о Резерфорде. А сколько немых вопросов возбуждают сегодня эти прекрасные воспоминания! Ну, скажем, что стояло: за его увереньем, будто уже весною 1912 года в Манчестере он уловил квантовый принцип в строении планетарного атома? Тут ведь прятался один из истоков квантовой революции. Но ныне уже некого спросить об этом, а в 1962 году было еще не поздно…
И наконец, написанные воспоминания обычно слишком избирательны — по множеству причин, начиная с требований скромности и такта, кончая требованиями формы и размера. Вернер Гейзенберг издал в 60–х годах целую книгу. Однако же не рассказал он в ней, как ему, двадцатишестилетнему доценту, успевшему создать свой вариант механики микромира, случилось в 1927 году разрыдаться у черной доски в час беспросветной дискуссии о руководящем принципе квантовой физики! А без этого сегодня не представишь атмосферы неумолимости в тогдашних поисках основополагающих истин. Такие подробности надо выспрашивать у ветеранов — надо вымаливать…
В общем, архивный комитет принял решение безошибочное: увидеться с каждым ветераном, вооружившись праведным любопытством, следовательской настойчивостью и отличными магнитофонами. А сперва каждому послать детально разработанный вопросник в согласии с его былою ролью в событиях и предполагаемой осведомленностью. Но для этого нужно было еще раньше подготовить около ста научных трактатов по истории квантовой революции. Да–да, тут нет преувеличения: эти вопросники — трактаты (поверьте читавшему многие из них).
Не удивительно, что только 15 февраля 1962 года исполнители проекта смогли провести первое из запланированных интервью. Зато удивительно, что менее чем через два с половиной года — 18 мая 1964–го — они сумели провести уже и последнее, сто семьдесят пятое!
Но почему же интервью оказалось больше, чем ветеранов? А мыслимо ли было ограничиться всего одной встречей, когда перекрестному «допросу» подвергались ведущие деятели квантового мятежа?! Появились многодневные серии бесед. На самую длинную не поскупился Вернер Гейзенберг: 12 интервью — 20–часовой разговор — 300 страниц тесной машинописи без интервалов. Нильс Бор дал 5 интервью — 7 часов крутилась пленка, записывая его голос. И Поль Дирак дал 5 интервью. Макс Борн — 3. Роберт Оппенгеймер — 3… Оттого–то и выстроились в сейфе архива бесценные папки числом 175.
…Выдвигается глубокий–глубокий стальной контейнер. Папки со стенограммами покойно стоят гуськом — по именному алфавиту: от итальянца Эдоардо Амальди, одного из римских сотрудников Ферми, до японца Хидеки Юкава, предсказателя ядерных частиц — мезонов. Исторические свидетельства стоят застывшей чередой. Хочется сказать — в бессмертие. Но лучше скромнее: в ожидании все чаще наступающего часа, когда осторожно и жадно за ними протягивается рука очередного историка или литератора, сумевшего или не сумевшего сбросить с себя наважденье солнечного тумана.
Нет, правда, с ними наедине совсем не просто пребывать в трезво оценивающем спокойствии. Все они вместе — как драматическая хроника в лицах, для которой очень подошло бы название романа Пруста — «В поисках утраченного времени».
2
А для собирателей этой хроники те два с лишним года странствий по адресам ветеранов тоже были драматической хроникой, но с иным названием: «В погоне за еще не утраченным временем».
Томас Кун, с чьим главенствующим участием прошли 133 интервью из 175, острее всего почувствал трагизм этой погони в ноябре 1962 года. Тогда для исполнителей программы только–только начался их «европейский год» и по приглашению Нильса Бора куновский штаб обосновался в Копенгагене.
Уже успели записать первую из шести бесед со старейшим боровским ассистентом Оскаром Клейном. Уже успели съездить в Бад–Пирмонт к Максу Борну. Уже списались с главою французских теоретиков Луи де Брой–лем о скором свидании в Париже. Уже условились с вдовою Шредингера о встрече в Вене… 7 октября сердечно поздравили с днем рождения патриарха квантовой физики: Бору исполнилось семьдесят семь. И еще через три недели приступили к беседам с ним — к важнейшей из задуманных серий.
Пустилась в долгую дорогу магнитофонная лента, а он рассказывал о своей долгой дороге в незримые глубины материи. По принятой схеме историки возвращали его к началу начал — к годам детства и университетской юности.
В спектре бесчисленных вариантов воспитания будущих мятежников в науке у каждого ветерана прочерчивалась своя линия. Хотелось услышать из собственных уст Бора, как стартовал он. И они узнавали то, о чем прежде историкам узнать было неоткуда. Среди прочего ему вспомнилось, как в годы студенчества он «собирался писать кое–что философское».
…Оказалось, он искал математическое решение проблемы свободы воли. Если все в природе предопределено и нет у человека свободы выбора поступков, любые этические нормы не имеют смысла: человек заведомо не волен в своем поведении — все разговоры о совести и нравственности теряют опору. А если свобода выбора есть, то как примирить ее с классической причинностью — с вековечным убеждением, что в мире все подчинено безусловной необходимости? Теперь, семидесятисемилетний, он с улыбкой назвал «сумасбродной» свою юношескую надежду одолеть идущее из глубокой древности философское недоумение с помощью математики. Но каков был студент! С такими духовными притязаниями он должен был пойти далеко. По одному этому эпизоду, право же, с немалой вероятностью уже угадывался будущий ниспровергатель классического детерминизма — господствующего представления об однозначно заданном ходе вещей во Вселенной.
Историки услышали интереснейший рассказ. Уточняли подробности. А он даже делал поясняющие рисунки на черной доске. А магнитофонная лента крутилась…
Виток за витком, как на горной дороге, шла погоня историков за еще не утраченным временем. Старому ученому нелегко давалось восстановление подробностей. В конце четвертого интервью он устало попросил: «Может быть, мы пока на этом остановимся?» Но до вершины — до главных событий квантовой революции — оставалось еще столько нерассказанного, что он сам поспешил добавить: «Скоро мы снова продолжил!».
По программе архивного комитета — и это был в ней, пожалуй, единственный достойный критики пункт — ветеранам предлагалось ограничиться в их исповедях лишь тем, что происходило до начала 30–х годов, ибо там кончалась эпоха бури и натиска. Но Бор успел дойти только до начала 20–х …
17 ноября 62–го он снова, как обещал, пустился в свой поиск полузабытых подробностей, а Томас Кун вместе с датскими коллегами — в свою погоню. Сейчас кажется символичной одна деталь: то пятое интервью Бор завершил воспоминанием о копенгагенском философе Харальде Хеффдинге, который был его университетским учителем. В доме Хеффдинга стояла статуя эллинской богини юности Гебы. И Бору припомнилось странное признание старого философа: тот однажды сказал, что часто поглядывает на Гебу, дабы увидеть, «снисходительна ли она или сурова?» Что–то серьезное слышалось за этим рассказом Бора. Может быть, в подтексте скрывалась мысль: а заслужил ли он, в свой черед, признательность молодых поколений, идущих на смену ему, уловившему в устройстве природы и в структуре нашего знания прежде никем не подмеченные черты?
А на следующий день — 18 ноября — он внезапно почувствовал головную боль. Ушел к себе и прилег. И тихо наступил конец.
…Так ошеломляюще непредугаданно, на полуслове, возник еще и боровский незаполнимый пробел. Теперь и за него могли досказывать недосказанное только документы. К счастью, их осталось много. В его научной переписке сохранилось более шести тысяч писем. И в ранней части рукописного фонда около шести тысяч страниц. Это — начиная со студенческих конспектов и кончая лишь Нобелевской лекцией 1922 года. Бумаги дальнейших сорока лет уже исчерпанной жизни тогда еще нуждались в архивной систематизации.
3
Исполнители архивной программы знали: в личном архиве Нильса Бора уже никогда не отыщутся документы его антифашистской деятельности 30–х годов — времен гитлеризма. Ему пришлось их сжечь весной 40–го года, когда началась немецкая оккупация Дании. Хотя по своим датам (1933—1940) эти документы не вмещались во временные рамки архива квантовой революции (1898— 1932), невосполнимой была эта вынужденная утрата: те документы многое могли бы порассказать о трагическом переплетении научной драмы идей с исторической драмой людей.
На нестираемые временем, глубокие следы такого переплетения историки постоянно наталкивались в своем общении с европейскими ветеранами. Отзвуки социальных бурь продолжали звучать в пострадавших душах, даже если это были души абстрактных теоретиков «не от мира сего».
…Когда готовились отправиться к восьмидесятилетнему Максу Борну, Томас Кун резонно решил: надо привлечь к беседам с главою геттингенских теоретиков его былого ассистента Паскуаля Йордана. Все–таки тот был на двадцать лет моложе учителя, и потому в его памяти надежней оживут перипетии их совместной разработки математического аппарата квантовой механики.
Потомок наполеоновского солдата–испанца Паскуаль Йордан в гитлеровские времена не покидал Германии. Теперь он был профессором в Гамбурге. Пригласить его в Бад–Пирмонт не составляло труда. Но от старика–учителя пришел резкий отказ принимать у себя прежнего ученика. И это был окрашенный негодованием политический отказ: Борн не мог простить Йордану ни того, что тот в 30–х годах заявил себя пронацистом, ни того, что в 50–х он стал сторонником послевоенного возрождения германского национализма. Борн предупредил Томаса Куна, что еще нетерпимей, чем он сам, Борн, настроена его жена, и потому никогда порога их дома не переступит «этот болван Паскуаль» (так выразился копенгагенский хранитель архива, комментируя случившееся). Пришлось ограничиться приглашением на беседы с Максом Борном — в качестве уточняющего эха — его другого ученика: не менее известного, но уже в свой черед весьма пожилого Фридриха Хунда.
…Немало открывалось историкам такого, что с непредусмотренной стороны обогащало человеческим материалом собрание естественнонаучной академической информации.
Развеивалась стародавняя молва о храме отвлеченной науки. Этот храм стоял распахнутым посреди бедствий истории. И его ничем не защищенные служители свидетельствовали, что были они людьми совершенно «от мира сего». В подавляющем своем большинстве они страстно жаждали, чтобы этот мир становился человечней, и делали для этого, что умели (такие, как Йордан, являли собою уродливое и, к счастью, редкое исключение). Так, в погоне за еще не утраченным временем историки узнавали и кое–что важное о социально–нравственной атмосфере квантовой революции.
4
Магнитофонные записи превращались в стенограммы.
Письма и рукописи — в микрофильмы.
Росло собрание перекопированных материалов истории.
А подлинники документов, если была на то воля собственников, оставались в их руках по–прежнему.
Потом все собранное было размножено в трех экземплярах, чтобы стать достоянием трех равноправных хранилищ архива. Одно разместилось в библиотеке Калифорнийского университета (Беркли), другое — в Философском обществе Америки (Филадельфия), третье — в Институте имени Нильса Бора (Копенгаген). Архив источников к истории квантовой физики стал еще и потому уникальным, что возник» сразу в трех копиях для независимого хранения. И для удобства использования его ценностей.
А в 1967 году вышла удивительная книга в строгом сером супере. 176 страниц большого, формата и тесной печати. Почти сплошь — за вычетом предисловий — текст без текста: нескончаемая вязь календарных дат, географических названий, биографических справок, библиографических ссылок, мудреных аббревиатур… Имена, имена, имена… Среди них и наши выдающиеся исследователи микромира: А. Иоффе, П. Капица, Л. Ландау, Д. Скобельцын, И. Тамм, В. Фок, Я. Френкель… Заглавия, заглавия, заглавия — написанных и недописанных трудов, прочитанных и непрочитанных лекций, сделанных и несделанных сообщений… И прочее — все в этом перечи–слительно–справочном роде… Вот уж и впрямь — книга не для чтения! А между тем…
Это увлекательнейший путеводитель по времени — по первой трети XX века, потрясшей основы классического природоведения и перевернувшей физическую картину мира. Потому–то физики–философы–историки согласны между собой, что для этих трех десятилетий не нашлось бы параллели на протяжении трех веков, протекших с ньютоновских времен.
В сущности, это путеводитель по нашей «хорошей истории, которую лучше всего начинать с начала». Конечно, очень удобно путешествовать с путеводителем, но и очень обременительно. Путеводитель — тяжкая укоризна: вот и этого не успел посмотреть, вот и здесь не сумел задержаться, вот и тут сплоховал, обойдя стороной па мятные достопримечательности…
Путеводитель предлагает десятки соблазнительных маршрутов. Но когда возможности путешественника ограничены, он вынужден выбирать с сожалением какой–нибудь один, как правило, самый впечатляющий. А для такого маршрута путеводитель всего менее нужен. И нам вовсе не придется поминутно заглядывать в папки с научными исповедями ветеранов или в папки с их корреспонденцией. Напротив, довольно редко: впереди не науковедческое исследование, а скорее вольное, хоть и невымышленное, повествование о квантовой революции, да к тому же только об ее решающих событиях и ключевых героях.
Почему же захотелось начать с этого совсем необязательного рассказа о рождении архива документальных источников к нашей хорошей истории? А потому, что так без промедлений делается зримым ее масштаб, ощутимым — ее драматизм, волнующей — ее человечность.
За год до смерти Нильс Бор написал:
«Было замеча тельным приключением жить в ту эпоху…».Так когда же она все–таки началась?
Путеводитель по времени — каталог архива — указывает дату: год 1898–й.
Согласимся.
Еще два слова самооправдания…
О многом из того, о чем будет речь впереди, мне уже случилось рассказывать в трех книгах — «Неизбежность странного мира», «Резерфорд», «Нильс Бор». И хотя эта небольшая книга по замыслу иная, чем те три, можно ли избежать повторений? Заранее знаю — не избежать. И тоже заранее хочу попросить читателя великодушно простить мне это.
Глава первая.
Два старта
1
Девятнадцатый век покидал историческую сцену так, точно ему мало было столетним трудом заслуженного титула — «век пара и электричества». Захотелось напоследок утвердиться в отцовских правах и на титул «атомного века». Это ему удалось:
- 1895 год — открытие рентгеновского излучения.
- 1896 год — открытие радиоактивности.
- 1897 год — открытие электрона.
Первые два феномена поразили воображение современников своей броской таинственностью: некие лучи пронизывали непрозрачные тела насквозь. Они позволяли видеть невидимое.
Природа вдруг обнаружила возможности, словно бы вполне мистические.
Третье открытие выглядело гораздо скромнее и темой газетных сенсаций не стало. Оно принадлежало к числу тех лабораторных побед, какие могут оценить только посвященные. И то не сразу. И не все.
Через сорок лет первооткрыватель электронов — кембриджский профессор Дж. Дж. Томсон — вспоминал:
— Я сделал первое сообщение о существовании этих корпускул на вечернем заседании Королевского института в очередную пятницу 30 апреля 1897 года… Много времени спустя один выдающийся физик рассказал мне, что подумал тогда, будто я всем им нарочно морочу голову. Я не был этим удивлен, ибо сам пришел к такому объяснению своих экспериментов с большой неохотой: лишь убедившись, что от опытных данных никуда не скрыться, я объявил о моей вере в существование тел, меньших, чем атомы.
Так вот что смущало: мысль о реальности тел, мень ших, чем атомы! А сегодня может смутить само это признание. Неужели на исходе великого века естествознания физики еще так мало знали о микромире, что у них не было даже уверенности в сложности атомов? Больше двух тысячелетий отделяло их от древних атомистов, а представление о первоосновах вещественного мира было у них едва ли не тем же, что у Демокрита или Лукреция Кара (не трудившихся с утра до вечера ни в каких лабораториях).
Это делает психологически понятной «большую не охоту», с какой пришел к своему открытию сорокалетний глава Кавендишской лаборатории в Кембридже. И это же исторически придает величие его научной заслуге.
Но с другой стороны, разве корпускулы, обнаружен ные Томсоном, не были давно предугаданы физической мыслью? Действительно, полутора столетиями раньше — в 1750 году —Вениямин Франклин, мастеривший громоотводы, верно почувствовал и резонно рассудил:
«Электрическая материя состоит из чрезвычайно тонких частиц». А в 1891 году, за шесть лет до томсоновского сообщения, его соотечественник Джонстон Стони дал уже имя этим гипотетическим частицам — «электроны».Томсон мог не придумывать нового имени для своих корпускул. А это значит, что его «неохота» могла бы уж и не быть столь «большой»…
Его вера в существование электронов, о которой объявил он в 1897 году, еще нуждалась в прямом эксперимен тальном подтверждении. Надо было показать: вот они — не вычисленные на бумаге в результате косвенных соображений, а реальные, во плоти, смотрите и даже пересчитывайте их, если угодно, по отдельности! Он придумал, как это сделать: он сумел одеть их в капельки тумана, обволакивающего всякие электрически заряженные пылинки. Электроны в его искусных опытах зримо продемонстрировали свое бытие.
Это произошло уже в следующем— 1898–м — году.
Так началась не завершенная и поныне длинная череда всегда волнующих открытий элементарных частиц материи. Но, правда, термина этого тогда еще не было.
2
Драма идей заученно повторяется из поколения в поколение.
Интересно, почему восьмидесятилетний Дж. Дж., публикуя в 1936 году книгу «Воспоминания и размышления», не захотел сказать читателям, кто был тем выдающимся физиком, который воспринял весть об электроне, как морочение головы? Может быть, Томсон решил оберечь его имя от наших сегодняшних просвещенных улыбок?
Вернее всего, то была доброта старости, которая и для себя ищет ответной доброты. Переживший все свое поколение, старый Томсон в ней нуждался. С годами он превратился, по выражению Резерфорда, в «кембриджскую окаменелость», ибо в свой черед воспринял как мороку новые физические идеи, прежде всего квантовые. «Он поставил себя вне физики», как сказал позднее историкам Нильс Бор. Не рассчитывая на снисхождение молодых, постаревший Дж. Дж. и жизнь–то повел как бы вне жизни: некогда общительный и легкий, он зажил в отшельническом уединении. В этом уединении он и вспоминал свои звездные годы. И чувствовал: нынешняя ирония по поводу тогдашнего консерватизма его выдающегося коллеги обернулась бы теперь против него самого. Вот он и утаил имя скептика.
Да, не признавать электрона на рубеже атомного века тоже значило поставить себя вне физики, вне ее будущего. Углубляться дальше в устройство природы без электрона она уже не могла.
Скоро это стало очевидно всем.
Скоро? Да еще всем? Нет, так только кажется издалека.
Почти неправдоподобно, но открытие «тел, меньших, чем атомы» отверг Вильгельм Конрад Рентген! В своей вюрцбургской лаборатории, где он сам сделал недавно эпохальное открытие, Рентген запретил ученикам и сотрудникам даже разговаривать об электронах. А в 1900 году, переехав в Мюнхен, перевез туда и свой запрет. В Мюнхенском университете стал строптивым свидетелем и неисправимым нарушителем этого запрета молодой выпускник Петербургского технологического института, наш будущий академик Абрам Федорович Иоффе. Он–то и рассказал впоследствии о своенравной позиции непреклонного Рентгена.
Но свойствами натуры научные позиции не объясняются. Своенравие может объяснить лишь одно: как научное несогласие превратилось в запрет. Характер Рентгена и впрямь отличали последовательность в поступках и непреклонность воли. Позднее эти черты дважды проявились с выразительностью, еще более необычайной, чем в истории с электроном.
…На исходе первой мировой войны (1914 — 1918) близкая к поражению Германия голодала. Семидесятитрехлетний Рентген терял силы от недоедания. Меж тем друзья из Голландии присылали ему масло и сахар. Однако он, полагая недостойным личное благополучие среди всеобщего бедствия, отдавал эти посылки для общественного распределения. И медленно таял.
Его нравственное чувство всегда оставалось неподкупным.
В последний год его жизни оно сыграло геростратову роль в судьбе его научного наследства. Он придавал значение только доведенным до конца исследованиям. И себя судил тем же судом, что других. А потому завещал без колебаний сжечь его неоконченные труды. В огне этой моральной беспощадности погибли и незавершенные работы молодого Иоффе, когда–то начатые в Мюнхене вместе с учителем.
Напрашивается догадка: так не оттого ли суровый Рентген отверг и открытие электрона, что исследования Томсона были в его глазах просто не доведенными до конца — до полной убедительности? (Иначе: были достойными огня, а не одобрения. Запрета, а не продолжения.) Возможно. Тем более что Иоффе удостоверил: электрон оставался для Рентгена «недоказанной гипотезой, применяемой часто без достаточных оснований и без нужды». Короче, может быть, электрону не повезло в Вюрцбурге и в Мюнхене только по причине сверхтребовательности Рентгена–экспериментатора?
Если в этом и заключена правда, то не вся. И не главная. А главная притаилась в двух процитированных Иоффе словах: «без нужды». Рентгену не нужен был электрон. Идейно не нужен!
Его классическая философия природы и философия познания могли обойтись без этой навязчиво–лишней детальки вещественного мира. Красивые и выверенные формулы классического описания всех явлений — механических и тепловых, электромагнитных и оптических — не требовали сведений о тельцах, «меньших, чем атомы». И не нуждались в представлениях о сложности внутриатомного мира. Сложность — это сложенность из чего–то. Но для свода законов классической физики она не имела значения.
Как ни странно, это легко понять. А осуждению это и вовсе не подлежит. Тут слышится голос тысячелетий.
— Если мы хотим заниматься астрономией, — говорил мудрый Тимей у Платона, — то нам незачем интересоваться небесными телами .
В самом деле: изучению было доступно в ту пору лишь перемещение небесных тел, а вовсе не их плоть — состав или структура. До них, безмерно далеких, дотянуться можно было только поэтическим воображением, Веками оно могло вольничать как угодно, населяя их богами или душами усопших, наделяя их доброй или недоброй волей. Это не имело никакого значения для описания их движения по небосводу.
Так, для расчета плотины по законам гидродинамики всегда безразлично было, обитают ли рыбешки в реке.
Так, по замечанию Игоря Евгеньевича Тамма, Эйнштейн увидел, что электрон — «чужеземец в стране классической электродинамики». Правда, в отличие от классика Рентгена вольнодумный Эйнштейн не захотел лишать этого чужеземца прав гражданства в физике вообще: ему важно было, а что расскажет электрон о законах пока незнаемой страны, из которой он явился?
Конечно, Рентген далек был от мысли, будто классическая картина природы уже дорисована до конца. Свои лучи он назвал x–лучами и никогда не называл их «рентгеновскими». Им руководило не только отвращение к самовозвеличению. «Икс», как повелось, обозначало неизвестное. Однако он не сомневался, что это неизвестное со временем объяснится классически — на основе уже испытанного физического законодательства. Ему, Рентгену, и не мнилось, что рентгеновские лучи порож даются в глубинах атомного пространства такими «ненужными» и такими «недоказанными» электронами!
Молодой петербуржец Иоффе, чья энергичная талант ливость вынуждала Рентгена прощать ему строптивость, ежедневно позволял себе в разговорах с учителем «бороться за электрон». И в конце концов — вместе с новой физикой! — одолел непреклонность старика. Это маленькое, но знаменательное событие произошло через десять лет после открытия томсоновских корпускул — в 1907 году, ничем особенно не замечательном в истории познания микромира.
В том году:
- …Тридцатишестилетний Эрнест Резерфорд лишь обо сновывался в Манчестерском университете Виктории, согласившись возглавить тамошнюю лабораторию.
- …Двадцатидвухлетний студент Копенгагенского университета Нильс Бор еще учился на четвертом курсе.
- …Двадцатилетний Эрвин Шредингер слушал в университете Вены лекции на втором.
- …Пятнадцатилетний Луи де Бройль посещал предпоследний класс гимназии в Париже.
- …Шестилетний Вернер Гейзенберг в Мюнхене играл со сверстниками в крестики–нолики.
- …Льва Ландау еще не было на свете.
3
С открытия электрона началось, наконец, конструиро вание атома: создание его правдоподобных моделей.
Впрочем, люди крылатой мысли пытались угадать атомную структуру задолго до появления в эксперименте «тел, меньших, чем атомы». Но они строили без строительного материала. И плоды их нетерпеливого воображения научной критике не подлежали. Защите — тоже. Не было критериев правдоподобия. Однако сила интуиции бывала порою поистине фантастической.
Вот дневниковая запись одного студента Страсбургского университета:
22 янв. 1887 г.Страсбургский студент, конечно, ничего не мог сказать о своих атомопланетах и центральной планете. Но тем не менее за двадцать четыре года до рождения экспериментально обоснованной планетарной модели Резерфорда он дал ее кратчайший графический набросок.
Каждый атом… представляет собою полную солнечную систему, то есть состоит из различных атомопланет, вращающихся с разными скоростями вокруг центральной планеты или каким–либо другим способом двигающихся характерно периодически.
Это был юноша из Москвы — Петр Лебедев. Будущая знаменитость: первый экспериментатор, сумевший измерить такую малость, как давление света! Об его дневниковой записи 1887 года никто не знал в течение семидесяти с лишним лет, пока В. Н. Болховитинов не опубликовал ее в I томе «Путей в незнаемое» (1960). Так, сам Лебедев не знал, что за полвека до него атом рисовался солнечной микросистемой московскому профессору М. Павлову (чьи лекции радовали молодого Герцена). И Джонстону Стони — крестному отцу электрона — представлялся тот же образ. И шлиссельбуржцу Николаю Морозову — высокоученому провидцу–фантазеру — грезился этот же астрономический призрак. И трезво–солидному Жану Перрену тоже. И многим другим — до и после открытия электрона.
До и после… Но все равно каждому это видение являлось точно впервые в истории познания. Тут не было повторения пройденного — не было преемственности идей. Просто в разное время разных счастливчиков, одаренных конструктивной интуицией, посещал один и тот же вещий теоретический сон. Это выглядит антиисторично, а на самом деле легко объяснимо. Тут всякий раз поднимала голос непреходящая вера людей в единство природы. Она диктовала гадательную мысль, что малое и большое в мироздании — Солнечная система и атом — устроены, наверное, по единому принципу, В этом было совсем немного физики, но очень много натурфилисофии. А натурфилософия меняется несравненно медленнее, чем наука.
Те, кому образ солнечной микросистемы стал являться уже после открытия Томсона, обладали, разумеется, громадным преимуществом: обнаружились кандидаты на роль атомопланет. Почему бы электронам не играть эту роль? Или похожую роль… Так, японский теоретик Нагаока сконструировал в начале века атомную модель в виде Сатурна с электронными кольцами. Это выглядело нисколько не фантастичней солнечной модели.
Естественно, и сам Дж. Дж. Томсон, выведший электроны на историческую сцену, тоже начал придумывать атом. Начал без промедлений — уже в 1898 году. Но он не прельстился возвышенными астрономическими параллелями. Он отвел электронам совсем прозаическую роль «изюминок в тесте». (Говорят, это сравнение ему и принадлежало, а вовсе не последующим популяризаторам. И от его «атома–кекса» или «атома–пудинга», право же, веяло свойственной ему в те годы общительностью и легкостью.)
А что было тестом в томсоновском атоме, если отрицательно заряженные электроны являли собою изюминки? Тестом служило само атомное пространство — «сфера с однородной положительной электризацией», как объявил Томсон. Так обеспечивалась электрическая нейтральность всякого атома как целого. Этому физическому требованию обязана была удовлетворять любая модель·.
Но любая атомная модель обязана была удовлетворять и еще одному требованию: быть устойчивой — этим свойством со всей несомненностью обладали реальные атомы долговечного земного вещества. А томсоновский кекс не обладал.
Дело в том, что электроны–изюминки покоились в положительном тесте. Меж тем уже была доказана теорема, объяснявшая, что любая система неподвижных зарядов обречена на развал: силы электрического взаимодействия — притяжения или отталкивания — тотчас выводят заряды из состояния покоя.
Томсону пришлось озаботиться улучшением своей модели. И через шесть лет, в 1904 году, он позволил электронам вращаться внутри атома отдельными группками — кольцами. Однако желанного правдоподобия снова не получалось. Непоправимый порок гнездился в произвольной идее положительно заряженного пространства. Но это пока оставалось нераскрытым — неразоблаченным экспериментально.
Пока… До Резерфорда…
4
Он был учеником Дж. Дж. — первым заморским докторантом в кембриджском старинном Тринити–колледже. Когда в 1895 году двадцатичетырехлетний сын новозеландского фермера там появился, старожилы отнеслись к нему свысока. Но уже вскоре по Кембриджу распространилась фраза одного заслуженного физика:
— Мы заполучили дикого кролика из страны антиподов, и он роет глубоко!
Правда, слово «кролик» не очень подходило к ново зеландцу: высокий рост, атлетическое сложение, громадный голос. Зато эпитет «дикий» подходил как нельзя лучше: признавалась первозданная сила выходца из антиподов и слышался намек на его необузданный нрав. А рыл он действительно глубоко — столько глубоко, что первым дорылся до атомных глубин. Не сразу — пласт за пластом. Но чудом редкой проницательности он не задерживался в толщах пустой породы. Мало кто жил в науке так продуктивно.
Электрон был открыт на его глазах. И даже при его существенном участии, как засвидетельствовал другой ученик Томсона — Р. Стрэтт (Рэлей–младший). Но тогда же воображение новозеландца захватила иная — недавно возвещенная во Франции — физическая новость: радиоактивность!
То была еще совсем не изведанная земля. И это он, Резерфорд, распознал в непонятной радиации урана два вида заряженных лучей, окрестив их греческими буквами «альфа» и «бета». Он показал, что альфа–лучи — поток тяжелых частиц с удвоенным зарядом « + », а бета–лучи — поток легких частиц с единичным зарядом «—»., И это он установил, что радиоактивность — самопроизвольный распад сложных атомов, идущий по статистическим законам случая. Вместе с еще более молодым Фредериком Содди, он, едва переваливший за тридцать, высказал и доказал ошеломляющее утверждение: в каждом акте радиоактивного распада сбывается сама собой вековечная мечта алхимиков — превращение одного химического элемента в другой.
К исходу первого десятилетия нашего века, пожалуй, никто не был так подготовлен к раскрытию структуры атома, как Резерфорд. И ничье воображение не было для этого так хорошо тренировано, как у него…
…Однажды на банкете в лондонском Королевском обществе известный астрофизик Артур Эддингтон глубокомысленно сказал, что электроны, быть может, всего только «умозрительная концепция», а реально они не существуют. Резерфорд встал, и, по словам очевидца, у него был вид рыцаря, готового вскричать: «Вы оскорбили даму моего сердца!» А вскричал он следующее:
— Электроны не существуют?! Ах, вот как! Отчего же я вижу их так ясно, как эту ложку перед собой?
(Помню, лет десять назад мне случилось пересказать этот исторический эпизод в одной ученой аудитории. Все весело рассмеялись, кроме молоденького доктора химических наук.
«Чепуха! — с удивительной серьезностью возразил он. — Наш глаз не может увидеть шарик диаметром в 10–13 сантиметра!»
И победительно поправил сползающие очки. Раздался насмешливый голос его соседа:
«Старик, ты никогда еще не говорил ничего более разумного, но Резерфорда из тебя не получится!»)
Альфа–частицы новозеландец называл «веселыми малышами». Кажется, он вообще питал глубоко личные симпатии — вполне человеческие — ко всем незримым обитателям микромира. Когда в 1932 году его ученик Джеймс Чэдвик открыл предсказанный им, Резерфордом, нейтрон и Нильс Бор обрадованно признал реальность этой новорожденной нейтральной частицы, сэр Эрнест ответным письмом сердечно поблагодарил датчанина — так, точно речь шла и впрямь о пополнении его, Резерфордова, семейства. А к альфа–частицам у него всегда сохранялось особое пристрастие. Они принесли ему решающе важные сведения об устройстве атомов. Как надежнейший тонко проникающий бур, они–то и помогли ему еще в молодости «рыть глубоко»…
Десять лет ушло на установление основных свойств и природы альфа–частиц.
…Масса — учетверенный атом водорода. Заряд — в два раза больший, чем у электрона, и притом положительный: +2. Скорость движения при вылете из радиоактивного атома 10 — 20 тысяч километров в секунду. Химические свойства — как у элемента гелия, сперва открытого в спектрах солнца и только потом на земле…
Десять лет работы! При нынешнем лабораторном инструментарии на выяснение всего этого понадобился бы один месяц, если не один день. Но тогда еще только–только рождались основы для конструирования сегодняшнего инструментария атомной физики. Вместе с идеями рождались ее методы. Среди них — фундаментальнейший: изучение рассеяния микрочастиц при их прохождении через вещество.
Началось это тогда, когда восемь лет работы с альфа–лучами были уже позади, — летом 1906 года в Канаде, где Резерфорд возглавлял физическую лабораторию Макгилльского университета. Непредвиденное и почти неприметное событие взбудоражило его мысль: узенький пучок альфа–частиц, пронизав тонкий слюдяной листок, чуть–чуть расширился. Вот и все, что случилось. Но отчего это случилось?
Фотопластинка зафиксировала отклонение доли частиц на два градуса от перпендикуляра. Возможно, иные отклонялись еще сильнее, да только почернение пластинки от их падения было, очевидно, нечувствительно слабым. 2° — сущий пустяк. Однако летели–то массивные микропули и притом с огромными скоростями! Что же могло сбить их с прямого пути? По–видимому, только электрическое воздействие встречных атомов, когда они, заряженные альфа–частицы, пронизывали тонкий листок слюды. Несложный расчет дал внушительный результат: тут проявлялось отклоняющее действие силового поля напряженностью в 100 000 вольт на сантиметр. Резерфорд тогда же написал:
«Такой результат ясно показывает, что атомы вещества должны быть средоточием очень интенсивных электрических полей».Первый же — случайный! — опыт по рассеянию альфа–частиц выводил на дорогу, ведущую в глубь атома, Новозеландец безошибочно почуял это.
Веселые малыши заслуживали его любви.
5
А потом в Манчестере 1909 года — не прошло и трех лет! — произошло вот что:
«Он повернулся ко мне и сказал: — Посмотрите–ка, не сможете ли вы получить некий эффект прямого отражения альфа–частиц от металлической поверхности?
Не думаю, чтобы он ожидал чего–нибудь подобного, но это было одно из тех «предчувствий», когда появляется надежда, что, быть может, кое–что все–таки удастся наблюдать, и уж во всяком случае удастся прощупать разведкой ту территорию, что соседствует с «землей Тома Тиддлера»…»
Так через пятьдесят с лишним лет вспоминал проис шедшее ученик Резерфорда, его тезка, Эрнест Марсден. «Земля Тома Тиддлера» — английское иносказание, равносильное русскому «золотое дно». Конечно, с расстояния в полвека открывшееся тогда золотое дно было видно постаревшему Марсдену во всей своей бескрайности. Но в 1909 году даже самому Резерфорду это предчувствие казалось сверхнесбыточным. Прямое отражение альфа–частиц от тоненького листка металлической фольги означало возвращение их вспять — полет обратно к радиоактивному источнику! Позднее он не раз повторял, что не верил, будто это возможно:
«То было почти столь же неправдоподобно, как если бы вы произвели выстрел по обрывку папиросной бумаги 15–дюймовым снарядом, а он вернулся бы назад и угодил в вас».Резерфорд не преувеличивал абсурдности ожидаемого эффекта. Альфа–луч походил на острую стрелу, запущенную с чудовищной скоростью из лука. И ей–то предлагалось, вонзившись в бумажную мишень, повернуть от нее в обратном направлении — к еще пульсирующей тетиве!.. Отчего он заказал такой бессмысленный эксперимент совсем юному ученику? Марсдену тогда едва исполнилось двадцать лет, и он только помогал в работе многоопытному доктору из Германии Гансу Гейгеру (тому самому, что позднее прославился как изобретатель счетчика радиации).
Угадывается этическая осмотрительность Резерфорда. Поручить заведомую несуразицу мастеру было бестактно: еще пойдет гулять молва, порочащая его. А неудача подмастерья — другое дело: невелик спрос — не выйдет, так сразу все и забудется… Словом, в самом выборе Марсдена сквозила осознаваемая нелепость задуманного эксперимента.
Трезвость — логика — расчет — солидность… Куда все подевалось? Загадочно. Но, может быть, непреходящая готовность послать к чертям признанные нормы трезвой рассудительности и пуститься на риск — это и есть психологическая норма поведения, разрешенная великим работникам науки? (Конечно, загадка так не разгадывается, но хоть очерчиваются ее контуры.)
В общем, юный Марсден трудился не зря! И вскоре Гейгер начал ревностно помогать собственному помощнику: перед обоими замерцала вдали земля Тома Тиддлера. Буквально — замерцала. Чтобы следить за рассеянием альфа–частиц, они ставили под разными углами к металлическим мишеням экран из сернистого цинка: отклонившиеся в сторону частицы, падая на такой экран, вызывали на нем мерцание — короткие вспышки–сцинтилляции. По этим вспышкам альфа–частицы можно было считать в темноте зашторенной лаборатории.
Через двадцать семь лет, за год до смерти, Резерфорд с нисколько не постаревшим изумлением вспоминал один из весенних дней 1909 года:
«…Гейгер вошел ко мне и в страшном возбуждении сказал: — Нам удалось наблюдать альфа–частицы, возвращающиеся назад!»В тот день — точно не зарегистрированный — стартовало создание первой научно обоснованной атомной модели. И одновременно стартовала сама ядерная физика.
Но должно было пройти еще около двух лет, прежде чем на исходе 1910–го или в начале 1911 года у Резерфорда появилось право поменяться ролями с Гейгером. Тоже через двадцать семь лет Гейгер в свой черед вспоминал другой памятный день:
«Однажды Резерфорд вошел в мою комнату, очевидно, в прекраснейшем расположении духа, и сказал: — Теперь я знаю, как выглядит атом!»На что же понадобились почти два года, разделившие эти симметричные сцены?
6
Они понадобились не столько на повторение экспериментов, сколько на повторное взвешивание–перевешивание возможного истолкования состоявшегося чуда.
Правда, Гейгеру и Марсдену пришлось насчитать в темноте миллион сцинтилляций, чтобы статистически достоверно изучить «бессмыслицу», «несуразицу», «абсурд». То была подвижническая работа. Между прочим, Эйнштейн, по свидетельству Отто Фриша, удивлялся продуктивности альфа–бомбардировок, сравнивая их «со стрельбой по воробьям в полной темноте».
Наш известный физико–химик Николай Шилов, посетивший в 10–х годах Манчестер, написал тогда про альфа–частицы поэтические строки: они «заставляют экран из сернистого цинка блестеть, как перо жар–птицы, ярким голубым сиянием неописуемой красоты». Это он наблюдал альфа–лучи, прямо падавшие на экран от источника, без рассеяния в металлических мишенях.
А частицы, возвращавшиеся назад, — другими словами, рассеянные на углы чуть ли не в 180°, — были редкостью: всего одна на 8000 альфа–частиц переживала эту судьбу! И одиночные голубые вспышки от их падения всегда возникали внезапно — через непредсказуемые интервалы. Следовало постоянно быть настороже. Нетерпеливый Резерфорд для такой работы не годился, да и вечно возбужденные его глаза уставали слишком быстро:
«Я проклинал все на свете и отступал через две минуты…».Зато ни на минуту не отступал он от другого — от поисков ответа на вопрос: что же происходит, когда «15–дюймовый альфа–снаряд» поворачивает вспять от мишени? Время пожирала вот эта неустанная работа мысли. И, между прочим, напрасно Резерфордов ученик более поздней поры — 30–х годов — Норман Фезер уверял в своей биографии учителя, что в 10–х годах случился в Манчестере «пустой год». Это все равно что счесть «пустым» время прорастания зерна в земле.
Любопытно, что сам же Фезер отметил: «Резерфорд был поставлен в тупик». Так ведь из тупика есть только два выхода: или уйти назад восвояси, или проламываться вперед. Резерфорд был из тех немногих, что предпочитают проламываться. Еще больше это походило на постепенный снос высокой стены — камень за камнем.
Альфа–частицы в большинстве своем легко пронизывали мишени. Им не удавалось бы это так просто, будь атомы сплошными шариками вещества, накатанными, как в модели Томсона, из положительно заряженного теста. Явно ближе к истине была идея сквозного атома. К слову сказать, еще в 1904 году об этой идее, возникшей тогда на других основаниях, писал Резерфорду его будущий друг австралиец Вильям Брэгг–старший.
В сквозном атоме отрицательные электроны и пока неизвестные носители положительного заряда должны быть разведены друг от друга далеко в стороны. Ну, скажем, как планеты и Солнце: легче легкого пролететь сквозь Солнечную систему, «ничего не задев» по дороге… Ничего? А связывающие все тела силовые поля тяготения? Их, разумеется, не миновать — они заполняют пустоту. И при этом — работают, определяя движение небесных тел с их огромными массами… Но в микромире массы так ничтожны, что гравитационные поля неощутимы. Там все дело в силах электрических. Примерно оценив их еще тогда, когда обнаружилось отклонение альфа–луча на 2°, Резерфорд теперь обдумывал конструкцию атома, способного отклонить альфа–частицу на 180° или — иначе — отшвырнуть ее назад. «Внутри атома должны действовать ужасающие силы…» — порою повторял он ненароком, выдавая ближним скрытую работу своей мысли.
Не могло ли отражение альфа–частицы назад быть результатом постепенного — многократного — отклонения ее на малые углы внутри мишени? Частица пронизывает множество атомов, углубляясь в мишень. Каждый чуть сбивает ее в сторону — скажем, на 2°. Один — на два градуса, другой — на два, третий, десятый, сороковой… В сумме — за 90 отклонений — может накопиться нужный эффект: все 180 градусов. Вот частица и вылетает из мишени обратно. Это ли не искомый ответ?
Однако протестовала теория вероятностей. Отклонение предполагало длиннейшую череду поворотов частицы все в одну и ту же сторону— как по заказу! Но для этого не было никаких оснований. Игроку в орел и решку может, конечно, пригрезиться, что он выиграет девяносто раз подряд. Почему бы нет? Да только вероятность такой баснословной серии выигрышей непредставимо мала: 1/2 в девяностой степени. Такую малость не с чем сравнить. Нет, по законам случая — статистически — вообще не могло получиться сколько–нибудь заметного отклонения: для любой частицы равновероятные отклонения в разные стороны просто взаимно погашались бы… Резерфорд увидел: механизм многократного рассеяния ничего не объясняет. Так что же происходило в мишени?
Выбора не было: если не многократное рассеяние, то однократное. Отражение назад представилось как итог столкновения альфа–частицы с единичным атомом. Он — сквозной! — отбрасывал ее обратно.
Легонькие электроны противостоять тяжелой частице не могли. Оставалось предположить, что есть внутри атома массивная сердцевина, способная на единоборство с альфа–снарядом. Она мала по объему, раз атом почти пуст. Но в ней–то и сосредоточена его главная масса. И весь его положительный заряд, уравновешивающий отрицательный заряд блуждающих в атоме электронов.
В сквозной планетной системе проглянуло могучее Солнце. «Ужасающие силы» могли исходить именно и только от него. Для положительно заряженной альфа–частицы то были силы электрического отталкивания.
…Родилась идея атомного ядра!
Эта идея прекрасно работала. Малость атомной сердцевины хорошо объясняла редкость прямого отражения: для поворота назад частице требовалось подлететь совсем близко к ядру — быть очень прицельной. Только тогда могла она испытать всю мощь отталкивания. Но в крошечное ядро попасть было трудно. Оттого–то это удавалось лишь одной частице примерно на 8000. И другие подмеченные в опытах Гейгера—Марсдена закономерности объяснялись легко и непринужденно.
Теперь в руках Резерфорда было достаточно строительного материала для конструирования правдоподобной модели атома. В центре — ядро, как Солнце. На периферии — электроны, как планеты. Электроны притягиваются ядром, как всегда взаимно притягиваются разноименные заряды. Но электроны на ядро не падают. потому что пребывают, как планеты, в непрерывном вращении вокруг него. И притом — с достаточной скоростью, чтобы центробежная сила по законам классической механики уравновешивала центростремительную. Словом, точная микромодель огромной Солнечной системы.
И в один прекрасный день на рубеже 1910 — 1911 годов Резерфорд по праву громогласно объявил в лаборатории:
— Теперь я знаю, как выглядит атом!
7
Все–таки на что же ушли два года? Разве не довольно было долгого зимнего вечера, чтобы обмозговать все рассказанное (и еще многое здесь опущенное)? Весьма возможно, что Резерфорд и впрямь додумался до решения за один вечер. Легко допустить, что зрелище планетарного атома выступило перед его мысленным взором сразу. И даже с полной отчетливостью. Но в полной отчетливости и была беда: он тотчас должен был увидеть, что такой атом по классическим законам не мог существовать!
И все пришлось обдумывать сначала. Однако с тем же результатом. И завтра, и через месяц — с тем же удручающим результатом… Корень зла в том и заключался, что делало планетарную модель точным подобием Солнечной системы: планетоподобное вращение электронов вокруг ядра.
При вращении — даже равномерном — скорость вращения меняется непрерывно: оставаясь неизменной по величине, она все время становится другой по направлению. И потому вступает в действие один из законов классической теории электричества: когда заряды движутся с переменной скоростью, они излучают электромагнитную энергию. Как и что при этом происходит, точно описывается математически. Но представить происходящее в зримых образах трудно (если вообще возможно).
Тут не обойтись без отступления в сторону, на которое, по правде говоря, надо было решиться еще раньше…
…Зримые образы замыкают воображение в кругу предметно–вещественных явлений. Вещественных! Однако есть еще круг явлений иных — связанных с силовыми полями в пространстве.
Массы порождают поле сил тяготения.
Заряды — поле электромагнитных сил.
Пустота имеет свое устройство — она вовсе не пуста. И с термина «поле» начинается ее описание.
Этот термин — поэтическая метафора. Она намекает на нечто однообразное бескрайнее, окружающее все тела и как бы засеянное силами взаимодействия между ними. Потому и «поле».
Мне вспоминаются студенческие споры — попытки осязаемо и зримо материализовать математические символы.
Доносится через десятилетия голос сокурсника:
— У Тютчева есть строки — прямо о еловых полях: «Как океан объемлет шар земной, земная жизнь кругом объята снами…» Поля — это сны вещества. Сны наяву — и не бесплотные:
«Небесный свод, горящий славой звездной, таинственно глядит из глубины. И мы плывем, пылающею бездной со всех сторон окружены…»И, продолжая фантазировать, он убежденно говорил, что «пылающая бездна» — это дьявольски точно. До того точно, что даже не образ, а «чистая физика», ибо поля — вместилища энергии. Им всюду можно теоретически приписать вполне определенную температуру. И тэ–дэ и тэ–пэ…
А другой голос уверял, что Фарадею и Максвеллу в их классическом XIX веке надо было заменить термин «поле» термином «море». Больше сходства и гораздо выразительней. Тем более что у электромагнитного поля и у других полей, наверное, тоже волновая природа.
Хорошо бы звучало: «море электромагнитных сил»! И есть в этом море свои штили, свои штормы. Да и для физических тел тогда появились бы естественные подобия: большие тела — как киты в океане, поменьше — всевозможные рыбы, а микрочастицы — как планктон. И уж совсем для полной натуральности картины все это движется: и волны, и тела. Наконец, поле — плоское, а море — объемное. И прочее, и прочее…
А третий голос — он принадлежал одной нашей милой сокурснице — спорил с первым и со вторым, утверждая, что такие сравнения чрезмерно предметны и слишком грубо отделяют вещество от полей. Меж тем само вещество пронизано силовыми полями: это они соединяют воедино все, из чего тела состоят. Звезды, атомы, ядра в атомах… На последнем этапе дробимости вещества его крупицы перестают быть отличимы от самих полей: возможно, элементарные частицы — это просто сгусточки полевой материи. «Горбатое поле», как говорил Эйнштейн. И потому не поля — сон вещества, а скорее напротив: вещество — сон полей. Тяжелый сон (и в шутку, и буквально). И так далее — долго еще все в этом роде… Что только не скажется в необязательном разговоре азартных студентов!
Верно было, что предметно зримые параллели тем меньше помогали воображению, чем предметней и зримей они были. Но в этом не заключалось ничего неожиданного. Ведь представление о силовых полях возникло не из повседневного опыта нашей жизни. Оно появилось с углублением физики в подспудную — скрытую от глаза — суть физических событий.
Часто можно услышать, что лишь в нашем веке — с рождением теории относительности и квантовой теории — физика утратила свою былую наглядность.
Былую? Но разве в Ньютоновы времена воображению легче было осваиваться с физической картиной мира? Взаимодействие удаленных друг от друга тел объяснялось тогда, как «действие на расстоянии» — через пустоту — без посредников. Разве это было представимо? Еще в древние времена и в средние века шли долгие споры об идее пустоты. Ее издавна заместила параллельно возникшая идея мирового эфира. Однако всепроникающий и для всего на свете проницаемый, непрерывный и бесплотный, абсолютно покоящийся и экспериментально непостижимый, был этот эфир еще менее наглядно представим, чем бесхитростная пустота.
А силовые поля объявлены были разными состояниями этой гипотетической мировой среды: эфирными вихрями, натяжениями, вибрациями. Так в XVII веке Декарт объяснял тяготение, а в XIX Максвелл — электромагнитные взаимодействия. Но разве наглядность таких объяснений не была иллюзией, поскольку совершенно непредставимым пребывал сам эфир?
Давным–давно человечество переросло натурфилософ скую веру в хрустальные небесные сферы, к которым прикреплены неподвижные звезды (надо же было объяснить, на чем они держатся!). А когда растаяло мифическое видение сфер, звезды не только остались на небе, но получили, наконец, все права самостоятельной физической реальности. Нечто похожее произошло с эфиром и силовыми полями.
В начале нашего века эфир исчез из физической кар тины природы: теория относительности показала, что ничего абсолютно покоящегося в мире нет. Этот термин сохранился лишь в языке радиопередач («сегодня в эфире»), да еще в редких (и всегда несостоятельных) попытках сызнова привлечь его к делу. Но силовые поля, как звезды, не пострадали. Напротив, тогда–то они и обрели подлинную физическую реальность. В них сосредоточилась энергия всех физических взаимодействий. Они получили статус самостоятельной формы существования материи мира. И если не нашему воображению, то хотя бы «чувству природы» стало легче: бесплотный эфир, как и пустота, был тяжелым и лишним грузом.
А наглядности не убыло, раз уж и прежде она была только мнимой…
И, пожалуй, стоит прибавить, что Эйнштейн, совершенно в духе Резерфорда, защищавшего реальность электрона, говорил:
«Для современного физика электромагнитное поле столь же реально, как стул, на котором он сидит»!Как же представить, что электрон–планета, вращаясь по классическим законам вокруг солнца–ядра, должен был терять энергию своего движения на излучение электромагнитных волн? Излучение — оно ведь не дается даром. На него надо тратиться. Силовое поле, порождаемое электроном или его порождающее, не будучи бесплотным, само обладает массой: физически — мерой инертности. Пока электрон движется прямолинейно и равномерно, его силовое поле покорно следует за ним или вместе с ним. Но когда взаимодействие с ядром заставляет электрон сворачивать с прямого пути, поле, как шлейф, «заносит в сторону». В меру своей инертности поле противится изменению скорости и «отрывается». Или — излучается в виде электромагнитных волн…
Такой зримый образ, право же, не хуже любой другой наглядной картинки, какую можно здесь изобрести. Любая окажется наивно приблизительной и легко уязвимой.
А существенно тут одно: лишь энергия движения могла бы позволить электрону в планетарной модели сопротивляться притягивающему действию ядра, но как раз она, эта спасительная энергия, вынуждена по классическим правилам непрерывно расходоваться на излучение. А если так, то падение электрона на ядро неминуемо. Каждую «атомопланету» ждет такая судьба.
Резерфорд понял: он увидел обреченный атом.
8
Так многого ли стоило его уверенное восклицание в лабораторной комнате Гейгера, что теперь он знает, как атом выглядит?! Нужно оценить всю тонкость этого восклицания: он ведь не провозгласил, что знает, как атом устроен, а только — как выглядит. Не больше. Но даже для этого надо было сначала решиться на открытую ссору с классикой.
Почти два года ушли, кроме всего прочего, на перемежающийся выбор между смирением и непокорством. Смирение равносильно было признанию неудачи. И тогда публикацию о многолетней работе следовало свести только к описанию опытных данных — без провозглашения планетарной модели. А непокорство настаивало на этой модели — вопреки логике, но с одобрения интуиции. Как во всяком психологическом противоборстве, последнее слово принадлежало характеру — складу натуры.
Резерфорд не был бы самим собой, если бы поступил иначе, чем поступил: в мае 1911 года со страниц лондонского «Философского журнала» он всем коллегам объят вил, как выглядит атом. Но в начале статьи предупредил:
«Вопрос об устойчивости предлагаемого атома на этой стадии не следует подвергать рассмотрению…»Это означало: «Господа, я сознаю, что сегодня мой атом вашей критики не выдержит. Он — обреченный. Однако у нашей науки, кроме сегодня, есть еще завтра!» Ту предупредительную фразу он закончил так:
«…Устойчивость окажется, очевидно, зависящей от тонких деталей структуры атома и движения составляющих его заряженных частей».Это была исследовательская программа на будущее.
Атомная физика могла принять ее к исполнению, а могла ею и пренебречь. Для этого довольно было не поверить в систему «ядро + электроны». И есть прямое свидетельство, что виднейшие из тогдашних теоретиков и экспериментаторов сначала его программой пренебрегли. Порознь и вместе.
Осенью того же 1911 года 23 выдающихся физика Европы собрались на первый Сольвеевский конгресс в Брюсселе.
(Двадцать четвертым его участником был вдохновитель и организатор конгресса Эрнест Сольвей — стареющий промышленник–меценат, выходец из рабочей семьи, инженер–изобретатель, влюбленный в науку и завороженный загадками строения вещества. Его щедрости обязана физика длящейся и поныне традиции Сольвеевских конгрессов, игравших немаловажную роль в нашей хорошей истории.) Разумеется, среди приглашенных на брюссельскую встречу 11–го года был и Резерфорд. А через полтора месяца после нее он написал Вильяму Брэггу:
«Я был весьма поражен в Брюсселе тем фактом, что континентальные физики… не утруждают свои головы размышлениями о реальных причинах вещей».А меж тем среди физиков, «не утруждавших свои головы», были на 1–м Сольвее Альберт Эйнштейн, Макс Планк, Гендрик Антон Лоренц, Анри Пуанкаре, Мария Кюри, Поль Ланжевен, Вальтер Нернст… Нужен был чувствительно ранящий повод, чтобы «кролик из антиподов»— даже дикий! — позволил себе столь невежливо обойтись с такой когортой высоколобых…
Что же случилось в Брюсселе?
Ничего не случилось! Но это–то и разгневало Резерфорда. Там были обмануты его нетерпеливые надежды. (Они всегда нетерпеливы, когда выношены терпеливо.) Со времени выхода майского выпуска «Философского журнала» прошло полгода, а в Брюсселе не прозвучало ни слова о планетарной модели атома. Точно то был явный и непростительный провал, какие принято в ученой среде обходить щадящим молчанием, особенно если виновник — высокочтимый коллега.
А вообще–то об атомной структуре отнюдь не молчали. Сам Лоренц, автор теории электронов, — он председательствовал на конгрессе — прямо говорил о достоинствах «модели атома, предложенной сэром Дж. Дж. Томсоном». С другой стороны, мюнхенский теоретик Арнольд Зоммерфельд разочарованно уверял, что вообще не желает иметь дела ни с какими «частными гипотезами об атомах». И никто не сказал, что ему хотя бы только приглянулись открытие атомного ядра и появление планетарной модели. Словом, в Брюсселе эти события не были оценены как стартовые вехи в познании микромира.
Однако, может быть, Брюссель был исключением? Нет, в ту пору, кажется, нигде и никого планетарный атом еще не пленил. Странно сказать, даже бывший страсбургский студент Петр Лебедев не высказал своего одобрения, которое было бы так естественно! В коротенькой статье выдающегося московского исследователя «Успехи физики в 1911 году» не упоминаются ни атомное ядро, ни резерфордовская конструкция атома. Конечно, это можно оправдать характером лебедевской статьи: он писал свой обзор для широкой публики и потому включил в него только бесспорные и понятные успехи года. А назвать бесспорной и понятной планетарную модель в те времена кто решился бы? Ну да ведь об этом–то тут и идет разговор.
Но нельзя не заметить, что и почти все, о чем шла речь на конгрессе в Брюсселе, тоже свойством бесспорной понятности тогда не отличалось. Шла дискуссия на тему «Излучение и кванты».
____________________________
- Вероятностный мир // Данин Даниил (часть – 1)
- Вероятностный мир // Данин Даниил (часть – 2)
- Вероятностный мир // Данин Даниил (часть – 3)
- Вероятностный мир // Данин Даниил (часть – 4)
- Вероятностный мир // Данин Даниил (часть – 5)
- Вероятностный мир // Данин Даниил (часть – 6)
- Вероятностный мир // Данин Даниил (Заключительная часть)