На способность геккона крепко держаться за что угодно обращали внимание еще древние греки. Аристотель пытался понять принцип закрепления лапы ящерицы, интересовались гекконами и средневековые ученые. Изучают их и в наше время. Есть несколько теорий, объясняющих выдающиеся способности этих ящериц в «альпинизме».
Присоски на пальцах. Одно из первых объяснений, которое выглядело вполне логичным. Правда, после изучения лапы геккона под микроскопом оказалось, что присосок на пальцах нет. К сожалению, миф о присосках живет и по сей день.
Электростатика. Еще одно правдоподобное объяснение, которое удалось опровергнуть (хотя есть и некоторые подтверждения этой теории, о них поговорим ниже), создав условия, при которых заряда на лапах геккона просто не могло быть. Животное все равно крепко держалось на гладкой поверхности.
Опровержение было получено еще в 30-х годах прошлого века. Немецкий ученый Вольф-Дитрих Деллит (Wolf-Dietrich Dellit) направил поток ионизированного воздуха в сторону лап геккона, который держался на металлической поверхности. Ионизация, по мнению Деллита, должна была нейтрализовать или значительно уменьшить силу сцепления лап с поверхностью, если бы механизм сцепления имел электрическую природу. Этого не произошло, поэтому был сделан вывод, что гекконы используют что-то еще.
Канадский ученый Александр Пенлидис считает, что этот эксперимент был некорректным. Дело в том, что контакт между лапами геккона и поверхностью чрезвычайно тесен, вследствие чего ионизированные молекулы просто не в состоянии проникнуть между сверхмалыми структурами лап и поверхности и нейтрализовать взаимодействие.
Сцепление лап геккона с неровностями поверхности. Это объяснение тоже не подходит, поскольку гекконы могут передвигаться по вертикальной поверхности из полированного стекла. Более того, они могут передвигаться и по потолку из того же материала.
С появлением электронного микроскопа лапу геккона удалось изучить во всех деталях. Как оказалось, она покрыта чрезвычайно тонкими щетинками, длина которых составляет до сотни микрометров. Концентрация щетинок на единицу площади поверхности лапы очень высока: более 14 000 волосков на 1 мм2.. Каждая щетинка, в свою очередь, не является монолитным образованием, а делится на конце на 400-1000 еще более мелких волокон. Толщина таких волокон составляет 0,2 мкм. На 1 см2. контакта с поверхностью приходится около 2 млрд волокон, каждое из которых к концу расширяется.
Американские ученые выяснили, что сила сцепления лапы геккона токи составляет 10 Ньютон на 1 см2.. Такое сцепление возможно лишь для гладких поверхностей, где задействованы практически все волокна на лапах животного. Если речь идет о поверхностях, часто встречающихся в местах обитания гекконов — скалы, деревья, здесь задействована лишь часть волокон на лапах (в силу большого числа неровностей на этих поверхностях), но и этого достаточно для удержания животного на месте.

















